Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T10:42:24.988Z Has data issue: false hasContentIssue false

Variations in electronic states of coumarin hexanethiolate-labeled i-Au25 and bi-Au25 clusters

Published online by Cambridge University Press:  27 August 2019

Angela Meola
Affiliation:
Department of Chemistry, Towson University, Towson, MD 21252, USA
Nicole Hondrogiannis
Affiliation:
Department of Chemistry, Towson University, Towson, MD 21252, USA
Pierce Brown
Affiliation:
Department of Chemistry, Towson University, Towson, MD 21252, USA
Maksym Zhukovskyi
Affiliation:
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
Zheng Zheng
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
Zeev Rosenzweig
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
Keith Reber
Affiliation:
Department of Chemistry, Towson University, Towson, MD 21252, USA
Mary Sajini Devadas*
Affiliation:
Department of Chemistry, Towson University, Towson, MD 21252, USA
*
Address all correspondence to Mary Sajini Devadas at [email protected]
Get access

Abstract

${\rm Au}_{25}\lpar {{\rm C}_6{\rm H}_{14}{\rm S}} \rpar_{18}{}^-$ icosahedron and [Au25(PPh)10(C6H14S)5Cl2]2+ bi-icosahedron clusters were synthesized. Ligand exchange reactions were carried out with a new coumarin-derived fluorophore (Cou-SH) to label both clusters. Labeled and unlabeled Au25 were compared and the changes in the electronic structure were determined. The labeled clusters showed marked changes in electronic states, as evidenced by the quenching in the UV region and enhancement in the near infrared. The quantum yield from Cou-SH decreased and the quantum yield from the labeled Au25 increased. Second, the authors observed changes in the electrochemical band gap.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

1.Sokolnikov, A.U.: THz Identification for Defense and Security Purposes: Identifying Materials, Substances, and Items (World Scientific Publishing Company, Singapore/USA, 2013).Google Scholar
2.Tate, J.S., Espinoza, S., Habbit, D., Hanks, C., Trybula, W., and Fazarro, D.: Military and national security implications of nanotechnology. J. Technol. Studies 41, 20 (2015).Google Scholar
3.Manzoor, O., Soleja, N., and Mohsin, M.: Nanoscale gizmos – the novel fluorescent probes for monitoring protein activity. Biochem. Eng. J. 133, 83 (2018).Google Scholar
4.Angelova, P., Kuchukova, N., Dobrikov, G., Petkova, I., Timtcheva, I., Kostova, K., Vauthey, E., and Giorgetti, E.: Design, synthesis and photophysical study of fluorophore modified noble metal nanoparticles. 2010 12th International Conference on Transparent Optical Networks, Munich, 2010, pp. 1–4. doi: 10.1109/ICTON.2010.5549256.Google Scholar
5.Sementa, L., Barcaro, G., Baseggio, O., De Vetta, M., Dass, A., Aprà, E., Stener, M., and Fortunelli, A.: Ligand-enhanced optical response of gold nanomolecules and its fragment projection analysis: the case of Au30(SR)18. J. Phys. Chem. C 121, 10832 (2017).Google Scholar
6.Kauffman, D.R., Alfonso, D., Matranga, C., Ohodnicki, P., Deng, X., Siva, R.C., Zeng, C., and Jin, R.: Probing active site chemistry with differently charged Au25q nanoclusters (q = −1, 0, +1). Chem. Sci. 5, 3151 (2014).Google Scholar
7.Park, S. and Lee, D.: Synthesis and electrochemical and spectroscopic characterization of biicosahedral Au25 clusters. Langmuir 28, 7049 (2012).Google Scholar
8.Zhu, M., Aikens, C.M., Hollander, F.J., Schatz, G.C., and Jin, R.: Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883 (2008).Google Scholar
9.Shichibu, Y., Negishi, Y., Watanabe, T., Chaki, N.K., Kawaguchi, H., and Tsukuda, T.: Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18): a stepping stone to cluster-assembled materials. J. Phys. Chem. C 111, 7845 (2007).Google Scholar
10.Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P.D., Calero, G., Ackerson, C.J., Whetten, R.L., Grönbeck, H., and Häkkinen, H.: A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. 105, 9157 (2008).Google Scholar
11.Khanna, S.N. and Jena, P.: Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664 (1992).Google Scholar
12.Kang, X., Chong, H., and Zhu, M.: Au25(SR)18: the captain of the great nanocluster ship. Nanoscale 10, 10758 (2018).Google Scholar
13.Thomas, K.G. and Kamat, P.V.: Making gold nanoparticles glow: enhanced emission from a surface-bound fluoroprobe. J. Am. Chem. Soc. 122, 2655 (2000).Google Scholar
14.Thomas, K.G. and Kamat, P.V.: Chromophore-functionalized gold nanoparticles. Acc. Chem. Res. 36, 888 (2003).Google Scholar
15.Stellacci, F., Bauer, C.A., Meyer-Friedrichsen, T., Wenseleers, W., Marder, S.R., and Perry, J.W.: Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles. J. Am. Chem. Soc. 125, 328 (2003).Google Scholar
16.Devadas, M.S., Kwak, K., Park, J.-W., Choi, J.-H., Jun, C.-H., Sinn, E., Ramakrishna, G., and Lee, D.: Directional electron transfer in chromophore-labeled quantum-sized Au25 clusters: Au25 as an electron donor. J. Phys. Chem. Lett. 1, 1497 (2010).Google Scholar
17.Qian, H., Zhu, Y., and Jin, R.: Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Natl Acad. Sci. 109, 696 (2012).Google Scholar
18.Weerawardene, K.L.D.M. and Aikens, C.M.: Origin of photoluminescence of Ag25(SR)18–nanoparticles: ligand and doping effect. J. Phys. Chem. C 122, 2440 (2018).Google Scholar
19.Liu, Z., Xu, Q., Jin, S., Wang, S., Xu, G., and Zhu, M.: Electron transfer reaction between Au25 nanocluster and phenothiazine-tetrachloro-p-benzoquinone complex. Int. J. Hydrogen Energy 38, 16722 (2013).Google Scholar
20.Leduc, C., Jung, J.-M., Carney, R.R., Stellacci, F., and Lounis, B.: Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. ACS Nano 5, 2587 (2011).Google Scholar
21.Goh, J.-Q., Malola, S., Häkkinen, H., and Akola, J.: Role of the central gold atom in ligand-protected biicosahedral Au24 and Au25 clusters. J. Phys. Chem. C 117, 22079 (2013).Google Scholar
22.Zhou, M., Jin, R., Sfeir, M.Y., Chen, Y., Song, Y., and Jin, R.: Electron localization in rod-shaped triicosahedral gold nanocluster. Proc. Natl Acad. Sci 114, E4697 (2017).Google Scholar
23.Banerjee, R., Maiti, C., Dutta, S., and Dhara, D.: Size- and distance-dependent excitation energy transfer in fluorophore conjugated block copolymer – gold nanoparticle systems. Polymer 59, 243 (2015).Google Scholar
24.Menard, L.D., Gao, S.-P., Xu, H., Twesten, R.D., Harper, A.S., Song, Y., Wang, G., Douglas, A.D., Yang, J.C., Frenkel, A.I., Nuzzo, R.G., and Murray, R.W.: Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. J. Phys. Chem. B 110, 12874 (2006).Google Scholar
25.García-Raya, D., Madueño, R., Blázquez, M., and Pineda, T.: Electrochemistry of molecule-like Au25 nanoclusters protected by hexanethiolate. J. Phys. Chem. C 113, 8756 (2009).Google Scholar
26.Emami, S. and Dadashpour, S.: Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 102, 611 (2015).Google Scholar
27.Lagunes, I., Begines, P., Silva, A., Galán, A.R., Puerta, A., Fernandes, M.X., Maya, I., Fernández-Bolaños, J.G., López, Ó, and Padrón, J.M.: Selenocoumarins as new multitarget antiproliferative agents: synthesis, biological evaluation and in silico calculations. Eur. J. Med. Chem. 179, 493 (2019).Google Scholar
28.Dass, A., Stevenson, A., Dubay, G.R., Tracy, J.B., and Murray, R.W.: Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x(L)x. J. Am. Chem. Soc. 130, 5940 (2008).Google Scholar
29.Qian, H., Eckenhoff, W.T., Bier, M.E., Pintauer, T., and Jin, R.: Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg. Chem. 50, 10735 (2011).Google Scholar
30.Kwak, K., Thanthirige, V.D., Pyo, K., Lee, D., and Ramakrishna, G.: Energy gap law for exciton dynamics in gold cluster molecules. J. Phys. Chem. Lett. 8, 4898 (2017).Google Scholar
31.Ahuja, T., Wang, D., Tang, Z., Robinson, D.A., Padelford, J.W., and Wang, G.: Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters. Phys. Chem. Chem. Phys. 17, 19342 (2015).Google Scholar
32.Shabaninezhad, M., Abuhagr, A., Sakthivel, N.A., Kumara, C., Dass, A., Kwak, K., Pyo, K., Lee, D., and Ramakrishna, G.: Ultrafast electron dynamics in thiolate-protected plasmonic gold clusters: size and ligand effect. J. Phys. Chem. C 123, 13344 (2019).Google Scholar
33.Kwak, K. and Lee, D.: Electrochemical characterization of water-soluble Au25 nanoclusters enabled by phase-transfer reaction. J. Phys. Chem. Lett. 3, 2476 (2012).Google Scholar
Supplementary material: File

Meola et al. supplementary material

Meola et al. supplementary material 1

Download Meola et al. supplementary material(File)
File 8.1 MB