Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T07:34:12.492Z Has data issue: false hasContentIssue false

Vapor phase infiltration: from a bioinspired process to technologic application, a prospective review

Published online by Cambridge University Press:  09 July 2018

Itxasne Azpitarte*
Affiliation:
CIC nanoGUNE, Tolosa Hiribidea, 76, 20018, Donostia-San Sebastián, Spain
Mato Knez
Affiliation:
CIC nanoGUNE, Tolosa Hiribidea, 76, 20018, Donostia-San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
*
Address all correspondence to Itxasne Azpitarte at [email protected]
Get access

Abstract

Biomineralization is a natural concept to alter the mechanical properties of soft matter. Mimicking this concept became desirable with a resulting great variety of approaches toward realizing functional hybrid materials. Vapor-phase infiltration (VPI), a solvent-free approach, is complementary to solution-based processes and often provides hybrid materials with a different chemical nature. This article overviews the evolution of VPI from a curiosity-driven alternative way to mimic biomineralization toward its application in functional materials design. Even though still in infancy, the rapidly growing interest shows promise for upcoming innovative applications of VPI in a great variety of research and development directions.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Reddy, N. and Yang, Y.: Structure and properties of chicken feather barbs as natural protein fibers. J. Polym. Environ. 15, 81 (2007).Google Scholar
2.Li, X., Chang, W.C., Chao, Y.J., Wang, R., and Chang, M.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613 (2004).Google Scholar
3.Kinoshita, S. and Yoshioka, S.: Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem 6, 1443 (2005).Google Scholar
4.Darmanin, T. and Guittard, F.: Superhydrophobic and superoleophobic properties in nature. Mater. Today 18, 273 (2015).Google Scholar
5.Boskey, A.L.: Mineralization of bones and teeth. Elements 3, 387 (2007).Google Scholar
6.Ozawa, H., Hoshi, K., and Amizuka, N.: Current concepts of bone biomineralization. J. Oral Biosci. 50, 1 (2008).Google Scholar
7.Sumitomo, T., Kakisawa, H., Owaki, Y., and Kagawa, Y.: Structure of natural nano-laminar composites: TEM observation of nacre. Mater. Sci. Forum 561–565, 713 (2007).Google Scholar
8.Muscheln, M. and Untersuchungen, N.: Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew. Chemie 116, 453 (2004).Google Scholar
9.Hight, L.M. and Wilker, J.J.: Synergistic effects of metals and oxidants in the curing of marine mussel adhesive. J. Mater. Sci. 42, 8934 (2007).Google Scholar
10.Broomell, C.C., Mattoni, M.A., Zok, F.W., and Waite, J.H.: Critical role of zinc in hardening of Nereis jaws. J. Exp. Biol. 209, 3219 (2006).Google Scholar
11.Broomell, C.C., Zok, F.W., and Waite, J.H.: Role of transition metals in sclerotization of biological tissue. Acta Biomater. 4, 2045 (2008).Google Scholar
12.Cribb, B.W., Stewart, A., Huang, H., Truss, R., and Noller, B.: Unique zinc mass in mandibles separates drywood termites from other groups of termites. Naturwissenschaften 95, 433 (2008).Google Scholar
13.Harrington, M.J., Masic, A., Holten-Andersen, N., Waite, J.H., and Fratzl, P.: Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science (80-.) 328, 216 (2010).Google Scholar
14.Lichtenegger, H.C., Schoberl, T., Ruokolainen, J.T., Cross, J.O., Heald, S.M., Birkedal, H., Waite, J.H., and Stucky, G.D.: Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proc. Natl. Acad. Sci. 100, 9144 (2003).Google Scholar
15.Politi, Y., Priewasser, M., Pippel, E., Zaslansky, P., Hartmann, J., Siegel, S., Li, C., Barth, F.G., and Fratzl, P.: A Spider's Fang: how to design an injection needle using chitin-based composite material. Adv. Funct. Mater. 22, 2519 (2012).Google Scholar
16.Degtyar, E., Harrington, M.J., Politi, Y., and Fratzl, P.: The mechanical role of metal ions in biogenic protein-based materials. Angew. Chem. Int. Ed. 53, 12026 (2014).Google Scholar
17.Carrington, E. and Gosline, J.M.: Mechanical design of mussel byssus: load cycle and strain rate dependence. Am. Malacol. Bull. 18, 135 (2004).Google Scholar
18.Werneke, S.W., Swann, C., Farquharson, L.A., Hamilton, K.S., and Smith, A.M.: The role of metals in molluscan adhesive gels. J. Exp. Biol. 210, 2137 (2007).Google Scholar
19.Zhao, H., Sun, C., Stewart, R.J., and Waite, J.H.: Cement proteins of the tube-building polychaete phragmatopoma californica. J. Biol. Chem. 280, 42938 (2005).Google Scholar
20.Van Olphen, H.: Maya blue: a clay-organic pigment? Science (80-.) 154, 645 (1966).Google Scholar
21.Boon, J.J., Hoogland, F., and Keune, K.: Chemical processes in aged oil paints affecting metal soap migration and aggregation. AIC Paint. Spec. Group Postprints 19, 18 (2007).Google Scholar
22.Keune, K. and Boon, J.J.: Analytical imaging studies of cross-sections of paintings affected by lead soap aggregate formation. Stud. Conserv. 52, 161 (2007).Google Scholar
23.Belfiore, L.A., Das, P., and Bosse, F.: Polymers and their complexes with palladium chloride. Polym. Phys. 34, 2675 (1996).Google Scholar
24.Belfiore, L.A., Indra, E., and Das, P.: Multi-functional coordination crosslinks in poly(vinylamine) complexes with cobalt chloride. Macromol. Symp. 114, 35 (1997).Google Scholar
25.Chen, K., Ding, J., Zhang, S., Tang, X., Yue, Y., and Guo, L.: A general bioinspired, metals-based synergic cross-linking strategy toward mechanically enhanced materials. ACS Nano 11, 2835 (2017).Google Scholar
26.Pan, H., Zhang, Y., Shao, H., Hu, X., Li, X., Tian, F., and Wang, J.: Nanoconfined crystallites toughen artificial silk. J. Mater. Chem. B 2, 1408 (2014).Google Scholar
27.Lee, S-M., Pippel, E., Gösele, U., Dresbach, C., Qin, Y., Chandran, C.V., Braäuniger, T., Hause, G., and Knez, M.: Greatly increased toughness of infiltrated spider silk. Science (80-.) 324, 488 (2009).Google Scholar
28.Lee, S.M., Pippel, E., and Knez, M.: Metal infiltration into biomaterials by ALD and CVD: a comparative study. ChemPhysChem 12, 791 (2011).Google Scholar
29.Wilson, C.A., Grubbs, R.K., and George, S.M.: Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 17, 5625 (2005).Google Scholar
30.Knez, M.: Diffusion phenomena in atomic layer deposition. Semicond. Sci. Technol. 27, 074001 (2012).Google Scholar
31.Leng, C.Z. and Losego, M.D.: Vapor phase infiltration (VPI) for transforming polymers into organic–inorganic hybrid materials: a critical review of current progress and future challenges. Mater. Horiz. 4, 747 (2017).Google Scholar
32.Gregorczyk, K. and Knez, M.: Hybrid nanomaterials through molecular and atomic layer deposition: top down, bottom up, and in-between approaches to new materials. Prog. Mater. Sci. 75, 1 (2016).Google Scholar
33.Lee, S.M., Pippel, E., Moutanabbir, O., Kim, J.H., Lee, H.J., and Knez, M.: In situ Raman spectroscopic study of al-infiltrated spider dragline silk under tensile deformation. ACS Appl. Mater. Interfaces 6, 16827 (2014).Google Scholar
34.Lee, S., Pippel, E., Moutanabbir, O., Gunkel, I., Thurn-albrecht, T., and Knez, M.: Improved mechanical stability of dried collagen membrane after metal infiltration. Appl. Mater. Interfaces 2, 2436 (2010).Google Scholar
35.Gregorczyk, K.E., Pickup, D.F., Sanz, M.G., Irakulis, I.A., Rogero, C., and Knez, M.: Tuning the tensile strength of cellulose through vapor-phase metalation. Chem. Mater. 27, 181 (2015).Google Scholar
36.Zhang, L., Patil, A.J., Li, L., Schierhorn, A., Mann, S., Gösele, U., and Knez, M.: Chemical infiltration during atomic layer deposition: metalation of porphyrins as model substrates. Angew. Chem. Int. Ed. 48, 4982 (2009).Google Scholar
37.Lee, S.M., Ischenko, V., Pippel, E., Masic, A., Moutanabbir, O., Fratzl, P., and Knez, M.: An alternative route towards metal-polymer hybrid materials prepared by vapor-phase processing. Adv. Funct. Mater. 21, 3047 (2011).Google Scholar
38.Sun, Y., Padbury, R.P., Akyildiz, H.I., Goertz, M.P., Palmer, J.A., and Jur, J.S.: Influence of subsurface hybrid material growth on the mechanical properties of atomic layer deposited thin films on polymers. Chem. Vap. Depos. 19, 134 (2013).Google Scholar
39.Padbury, R.P. and Jur, J.S.: Systematic study of trimethyl aluminum infiltration in polyethylene terephthalate and its effect on the mechanical properties of polyethylene terephthalate fibers. J. Vac. Sci. Technol. A 33, 01A112 (2015).Google Scholar
40.McClure, C.D., Oldham, C.J., and Parsons, G.N.: Effect of Al2O3 ALD coating and vapor infusion on the bulk mechanical response of elastic and viscoelastic polymers. Surf. Coat. Technol. 261, 411 (2015).Google Scholar
41.Dusoe, K., Ye, X., Kisslinger, K., Stein, A., Lee, S-W., and Nam, C-Y.: Ultra-high elastic strain energy storage in metal-oxide-infiltrated patterned hybrid polymer nanocomposites. Nano Lett. 17, 7416 (2017).Google Scholar
42.Azpitarte, I., Zuzuarregui, A., Ablat, H., Ruiz-Rubio, L., López-Ortega, A., Elliott, S.D., and Knez, M.: Suppressing the thermal and ultraviolet sensitivity of Kevlar by infiltration and hybridization with ZnO. Chem. Mater. 29, 10068 (2017).Google Scholar
43.Gong, B., Peng, Q., Jur, J.S., Devine, C.K., Lee, K., and Parsons, G.N.: Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater. 23, 3476 (2011).Google Scholar
44.Nam, C-Y., Stein, A., and Kisslinger, K.: Direct fabrication of high aspect-ratio metal oxide nanopatterns via sequential infiltration synthesis in lithographically defined SU-8 templates. J. Vac. Sci. Technol. B 33, 06F201 (2015).Google Scholar
45.Dandley, E.C., Lemaire, P.C., Zhu, Z., Yoon, A., Sheet, L., and Parsons, G.N.: Wafer-scale selective-area deposition of nanoscale metal oxide features using vapor saturation into patterned poly(methyl methacrylate) templates. Adv. Mater. Interfaces 4, 1 (2017).Google Scholar
46.Gong, B., Kim, D.H., and Parsons, G.N.: Mesoporous metal oxides by vapor infiltration and atomic layer deposition on ordered surfactant polymer films. Langmuir 28, 11906 (2012).Google Scholar
47.Wang, Y., Qin, Y., Berger, A., Yau, E., He, C., Zhang, L., Gösele, U., Knez, M., and Steinhart, M.: Nanoscopic morphologies in block copolymer nanorods as templates for atomic-layer deposition of semiconductors. Adv. Mater. 21, 2763 (2009).Google Scholar
48.Peng, Q., Tseng, Y.C., Darling, S.B., and Elam, J.W.: Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers. Adv. Mater. 22, 5129 (2010).Google Scholar
49.Peng, Q., Tseng, Y.C., Darling, S.B., and Elam, J.W.: A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5, 4600 (2011).Google Scholar
50.Kim, J.J., Suh, H.S., Zhou, C., Mane, A.U., Lee, B., Kim, S., Emery, J.D., Elam, J.W., Nealey, P.F., Fenter, P., and Fister, T.T.: Mechanistic understanding of tungsten oxide in-plane nanostructure growth via sequential infiltration synthesis. Nanoscale 10, 3469 (2018).Google Scholar
51.Ishchenko, O.M., Krishnamoorthy, S., Valle, N., Guillot, J., Turek, P., Fechete, I., and Lenoble, D.: Investigating sequential vapor infiltration synthesis on block-copolymer-templated titania nanoarrays. J. Phys. Chem. C 120, 7067 (2016).Google Scholar
52.Yin, J., Xu, Q., Wang, Z., Yao, X., and Wang, Y.: Highly ordered TiO2 nanostructures by sequential vapour infiltration of block copolymer micellar films in an atomic layer deposition reactor. J. Mater. Chem. C 1, 1029 (2013).Google Scholar
53.Choi, J.W., Li, Z., Black, C.T., Sweat, D.P., Wang, X., and Gopalan, P.: Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors. Nanoscale 8, 11595 (2016).Google Scholar
54.She, Y., Lee, J., Diroll, B.T., Lee, B., Aouadi, S., Shevchenko, E.V., and Berman, D.: Rapid synthesis of nanoporous conformal coatings via plasma-enhanced sequential infiltration of a polymer template. ACS Omega 2, 7812 (2017).Google Scholar
55.Tseng, Y-C., Peng, Q., Ocola, L.E., Czaplewski, D.A., Elam, J.W., and Darling, S.B.: Enhanced polymeric lithography resists via sequential infiltration synthesis. J. Mater. Chem. 21, 11722 (2011).Google Scholar
56.Tseng, Y-C., Peng, Q., Ocola, L.E., Czaplewski, D.A., Elam, J.W., and Darling, S.B.: Etch properties of resists modified by sequential infiltration synthesis. J. Vac. Sci. Technol. B 29, 06FG01 (2011).Google Scholar
57.Tseng, Y.C., Peng, Q., Ocola, L.E., Elam, J.W., and Darling, S.B.: Enhanced block copolymer lithography using sequential infiltration synthesis. J. Phys. Chem. C 115, 17725 (2011).Google Scholar
58.Yu, Y., Li, Z., Wang, Y., Gong, S., and Wang, X.: Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Adv. Mater. 27, 4938 (2015).Google Scholar
59.Wang, W., Chen, C., Tollan, C., Yang, F., Qin, Y., and Knez, M.: Efficient and controllable vapor to solid doping of the polythiophene P3HT by low temperature vapor phase infiltration. J. Mater. Chem. C 5, 2686 (2017).Google Scholar
60.Wang, W., Yang, F., Chen, C., Zhang, L., Qin, Y., and Knez, M.: Tuning the conductivity of polyaniline through doping by means of single precursor vapor phase infiltration. Adv. Mater. Interfaces 4, 1 (2017).Google Scholar
61.Wang, W., Chen, C., Tollan, C., Yang, F., Beltrán, M., Qin, Y., and Knez, M.: Conductive polymer-inorganic hybrid materials through synergistic mutual doping of the constituents. ACS Appl. Mater. Interfaces 9, 27964 (2017).Google Scholar
62.Rahman, A., Liu, M., and Black, C.T.: Block copolymer self assembly for design and vapor-phase synthesis of nanostructured antireflective surfaces. J. Vac. Sci. Technol. B 32, 06FE02 (2014).Google Scholar
63.Berman, D., Guha, S., Lee, B., Elam, J.W., Darling, S.B., and Shevchenko, E.V.: Sequential infiltration synthesis for the design of low refractive index surface coatings with controllable thickness. ACS Nano 11, 2521 (2017).Google Scholar
64.Akyildiz, H.I., Lo, M., Dillon, E., Roberts, A.T., Everitt, H.O., and Jur, J.S.: Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers. J. Mater. Res. 29, 2817 (2014).Google Scholar
65.Akyildiz, H.I., Stano, K.L., Roberts, A.T., Everitt, H.O., and Jur, J.S.: Photoluminescence mechanism and photocatalytic activity of organic-inorganic hybrid materials formed by sequential vapor infiltration. Langmuir 32, 4289 (2016).Google Scholar
66.Ocola, L.E., Gosztola, D.J., Yanguas-Gil, A., Suh, H-S., and Connolly, A.: Photoluminescence of sequential infiltration synthesized ZnO nanostructures. SPIE Proc. 9755, 97552C (2016).Google Scholar
67.Ocola, L.E., Connolly, A., Gosztola, D.J., Schaller, R.D., and Yanguas-Gil, A.: Infiltrated zinc oxide in poly(methyl methacrylate): an atomic cycle growth study. J. Phys. Chem. C 121, 1893 (2017).Google Scholar
68.Obuchovsky, S., Deckman, I., Moshonov, M., Segal Peretz, T., Ankonina, G., Savenije, T.J., and Frey, G.L.: Atomic layer deposition of zinc oxide onto and into P3HT for hybrid photovoltaics. J. Mater. Chem. C 2, 8903 (2014).Google Scholar
69.Moshonov, M. and Frey, G.L.: Directing hybrid structures by combining self-assembly of functional block copolymers and atomic layer deposition: a demonstration on hybrid photovoltaics. Langmuir 31, 12762 (2015).Google Scholar
70.Segal-Peretz, T., Winterstein, J., Doxastakis, M., Ramírez-Hernández, A., Biswas, M., Ren, J., Suh, H.S., Darling, S.B., Liddle, J.A., Elam, J.W., De Pablo, J.J., Zaluzec, N.J., and Nealey, P.F.: Characterizing the three-dimensional structure of block copolymers via sequential infiltration synthesis and scanning transmission electron tomography. ACS Nano 9, 5333 (2015).Google Scholar
71.Obuchovsky, S., Levin, M., Levitsky, A., and Frey, G.L.: Morphology visualization of P3HT: fullerene blends by using subsurface atomic layer deposition. Org. Electron. 49, 234 (2017).Google Scholar
72.Gong, B., Spagnola, J.C., and Parsons, G.N.: Hydrophilic mechanical buffer layers and stable hydrophilic finishes on polydimethylsiloxane using combined sequential vapor infiltration and atomic/molecular layer deposition. J. Vac. Sci. Technol. A 30, 01A156 (2012).Google Scholar
73.Barry, E., Mane, A.U., Libera, J.A., Elam, J.W., and Darling, S.B.: Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A 5, 2929 (2017).Google Scholar
74.Spagnola, J.C., Gong, B., Arvidson, S.A., Jur, J.S., Khan, S.A., and Parsons, G.N.: Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers. J. Mater. Chem. 20, 4213 (2010).Google Scholar
75.Jur, J.S., Spagnola, J.C., Lee, K., Gong, B., Peng, Q., and Parsons, G.N.: Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26, 8239 (2010).Google Scholar
76.Akyildiz, H.I., Padbury, R.P., Parsons, G.N., and Jur, J.S.: Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers. Langmuir 28, 15697 (2012).Google Scholar
77.Gong, B. and Parsons, G.N.: Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition. J. Mater. Chem. 22, 15672 (2012).Google Scholar