Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T06:31:54.052Z Has data issue: false hasContentIssue false

Tuning the physical properties of amorphous In–Zn–Sn–O thin films using combinatorial sputtering

Published online by Cambridge University Press:  05 December 2016

P.F. Ndione*
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
A. Zakutayev
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
M. Kumar
Affiliation:
Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA
C.E. Packard
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA
J.J. Berry
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
J.D. Perkins
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
D.S. Ginley
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
*
Address all correspondence to P.F. Ndione at [email protected]
Get access

Abstract

Transparent conductive oxides and amorphous oxide semiconductors are important materials for many modern technologies. Here, we explore the ternary indium zinc tin oxide (IZTO) using combinatorial synthesis and spatially resolved characterization. The electrical conductivity, work function, absorption onset, mechanical hardness, and elastic modulus of the optically transparent (>85%) amorphous IZTO thin films were found to be in the range of 10–2415 S/cm, 4.6–5.3 eV, 3.20–3.34 eV, 9.0–10.8 GPa, and 111–132 GPa, respectively, depending on the cation composition and the deposition conditions. This study enables control of IZTO performance over a broad range of cation compositions.

Type
Functional Oxides Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ko, S.W., Kim, S.K., Kim, J.M., Cho, J.H., Park, H.S., and Choi, B.D.: Electrical properties and reliability analysis of solution-processed indium tin zinc oxide thin film transistors with O2-plasma treatment. J. Nanosci. Nanotechnol. 15, 7476 (2015).Google Scholar
2. Ndione, P.F., Garcia, A., Widjonarko, N.E., Sigdel, A.K., Steirer, K.X., Olson, D.C., Parilla, P.A., Ginley, D.S., Armstong, N.R., Richards, R.E., Ratcliff, E.L., and Berry, J.J.: Highly-tunable nickel cobalt oxide as a low-temperature P-type contact in organic photovoltaic devices. Adv. Energy Mater. 3, 524 (2013).Google Scholar
3. Ginley, D., Coutts, T., Perkins, J., Young, D., Li, X., and Parilla, P.: Next-generation transparent conducting oxides for photovoltaic cells: an overview. MRS Proc. 668, H2.7.1 (2011).Google Scholar
4. Fortunato, E., Ginley, D., Hosono, H., and Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242 (2007).CrossRefGoogle Scholar
5. Sigdel, A.K., Ndione, P.F., Perkins, J.D., Gennett, T., van Hest, M.F.A.M., Shaheen, S.E., Ginley, D.S., and Berry, J.J.: Radio-frequency superimposed direct current magnetron sputtered Ga:ZnO transparent conducting thin films. J. Appl. Phys. 111, 093718 (2012).Google Scholar
6. Marks, T.J., Veinot, J.G.C., Cui, J., Yan, H., Wang, A., Edleman, N.L., Ni, J., Huang, Q., Lee, P., and Armstrong, N.R.: Progress in high work function TCO OLED anode alternatives and OLED nanopixelation. Synth. Met. 127, 29 (2002).CrossRefGoogle Scholar
7. Proffit, D.E., Philippe, T., Emery, J.D., Ma, Q., Buchholz, B.D., Voorhees, P.W., Bedzyk, M.J., Chang, R.P.H., and Mason, T.O.: Thermal stability of amorphous Zn-In-Sn-O films. J. Electroceram. 34, 167 (2014).CrossRefGoogle Scholar
8. Kim, Y.S., Hwang, W.J., Eun, K.T., and Choa, S.-H.: Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays. Appl. Surf. Sci. 257, 8134 (2011).Google Scholar
9. Zeng, K., Zhu, F., Hu, J., Shen, L., Zhang, K., and Gong, H.: Investigation of mechanical properties of transparent conducting oxide thin films. Thin Solid Films 443, 60 (2003).Google Scholar
10. John, R.A., Nguyen, A.C., Chen, Y., Shukla, S., Chen, S., and Mathews, N.: Modulating cationic ratios for high-performance transparent solution-processed electronics. ACS Appl. Mater. Interfaces 8, 1139 (2016).CrossRefGoogle ScholarPubMed
11. Kumar, M., Sigdel, A.K., Gennett, T., Berry, J.J., Perkins, J.D., Ginley, D.S., and Packard, C.E.: Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity. Appl. Surf. Sci. 283, 65 (2013).Google Scholar
12. Son, D.-J., Ko, Y.-D., Jung, D.-G., Boo, J.-H., Choa, S.-H., and Kim, Y.-S.: Thermal effect on characteristics of IZTO thin films deposited by pulsed DC magnetron sputtering. Bull. Korean Chem. Soc. 32, 847 (2011).Google Scholar
13. Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F., and Rapkine, D.H.: Zinc-indium-oxide: a high conductivity transparent conducting oxide. Appl. Phys. Lett. 67, 2246 (1995).Google Scholar
14. Harvey, S.P., Poeppelmeier, K.R., and Mason, T.O.: Subsolidus phase relationships in the ZnO–In2O3–SnO2 system. J. Am. Ceram. Soc. 91, 3683 (2008).CrossRefGoogle Scholar
15. Ryu, M.K., Yang, S., Park, S.-H.K., Hwang, C.-S., and Jeong, J.K.: High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: combinatorial approach. Appl. Phys. Lett. 95, 072104 (2009).Google Scholar
16. Iwasaki, T., Itagaki, N., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H.: Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: an application to amorphous oxide semiconductors in In–Ga–Zn–O system. Appl. Phys. Lett. 90, 242114 (2007).Google Scholar
17. Taylor, M.P., Readey, D.W., Teplin, C.W., Hest, M.F.A.M.v., Alleman, J.L., Dabney, M.S., Gedvilas, L.M., Keyes, B.M., To, B., Perkins, J.D., and Ginley, D.S.: The electrical, optical and structural properties of InxZn1–xOy (0 ≤ x ≤ 1) thin films by combinatorial techniques. Meas. Sci. Technol. 16, 90 (2005).CrossRefGoogle Scholar
18. Bunn, J.K., Voepel, R.Z., Wang, Z., Gatzke, E.P., Lauterbach, J.A., and Hattrick-Simpers, J.R.: Development of an optimization procedure for magnetron-sputtered thin films to facilitate combinatorial materials research. Ind. Eng. Chem. Res. 55, 1236 (2016).Google Scholar
19. Green, M.L., Takeuchi, I., and Hattrick-Simpers, J.R.: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).Google Scholar
20. Zakutayev, A., Perkins, J.D., Parilla, P.A., Widjonarko, N.E., Sigdel, A.K., Berry, J.J., and Ginley, D.S.: Zn–Ni–Co–O wide-band-gap p-type conductive oxides with high work functions. MRS Commun. 1, 23 (2011).Google Scholar
21. Li, X.D. and Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).Google Scholar
22. Buchholz, D.B., Proffit, D.E., Wisser, M.D., Mason, T.O., and Chang, R.P.H.: Electrical and band-gap properties of amorphous zinc–indium–tin oxide thin films. Progr. Nat. Sci.: Mater. Int. 22, 1 (2012).Google Scholar
23. Kamiya, T., Nomura, K., and Hosono, H.: Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping. J. Disp. Technol. 5, 273 (2009).CrossRefGoogle Scholar
24. Rosen, J. and Warschkow, O.: Electronic structure of amorphous indium oxide transparent conductors. Phys. Rev. B 80, 115215 (2009).Google Scholar
25. Palmer, G.B., Poeppelmeier, K.R., and Mason, T.O.: Conductivity and transparency of ZnO/SnO2-cosubstituted In2O3 . Chem. Mater. 9, 3121 (1997).Google Scholar
26. Lu, Y.-B., Yang, T.L., Ling, Z.C., Cong, W.-Y., Zhang, P., Li, Y.H., and Xin, Y.Q.: How does the multiple constituent affect the carrier generation and charge transport in multicomponent TCOs of In–Zn–Sn oxide. J. Mater. Chem. C 3, 7727 (2015).Google Scholar
27. González, G.B.: Investigating the defect structures in transparent conducting oxides using X-ray and neutron scattering techniques. Materials 5, 818 (2012).Google Scholar
28. Frank, G. and Köstlin, H.: Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A: Solids Surf. 27, 197 (1982).Google Scholar
29. Lee, S., Ji, K.-S., Park, H., Tark, S.J., Park, S., Lee, J.C., Kim, W.M., Kang, Y., Lee, H.-S., and Kim, D.: Structural, electrical, and optical properties of Zn–In–Sn–O films for silicon heterojunction solar cells. Thin Solid Films 589, 233 (2015).CrossRefGoogle Scholar
30. Li, H. and Bradt, R.C.: Knoop microhardness anisotropy of single-crystal cassiterite (SnO2). J. Am. Ceram. Soc. 74, 1053 (1991).Google Scholar
31. Barth, S., Harnagea, C., Mathur, S., and Rosei, F.: The elastic moduli of oriented tin oxide nanowires. Nanotechnology 20, 115705 (2009).Google Scholar
32. Mukhopadhyay, A.K., Chaudhuri, M.R., Seal, A., Dalui, S.K., Banerjee, M., and Phani, K.K.: Mechanical characterization of microwave sintered zinc oxide. B. Mater. Sci. 24, 125 (2001).CrossRefGoogle Scholar
33. Martin, L.P., Dadon, D., Rosen, M., Gershon, D., Birman, A., Levush, B., and Carmel, Y.: Ultrasonic and dielectric characterization of microwave-sintered and conventionally sintered zinc oxide. J. Am. Ceram. Soc. 79, 2652 (1996).CrossRefGoogle Scholar
34. Pradeepkumar, M.S., Sibin, K.P., Swain, N., Sridhara, N., Dey, A., Barshilia, H.C., and Sharma, A.K.: Nanoindentation response of ITO film. Ceram. Int. 41, 8223 (2015).CrossRefGoogle Scholar
35. Ashida, T., Miyamura, A., Oka, N., Sato, Y., Yagi, T., Taketoshi, N., Baba, T. and Shigesato, Y.: Thermal transport properties of polycrystalline tin-doped indium oxide films. J. Appl. Phys. 105, 073709 (2009).CrossRefGoogle Scholar
36. Ginley, D.S., Hosono, H., and Paine, D.C.: Handbook of Transparent Conductors (Springer, New York, 2010).Google Scholar
37. Cairns, D.R., Paine, D.C., and Crawford, G.P.: The mechanical reliability of sputter-coated indium tin oxide polyester substrates for flexible display and touchscreen applications. MRS Online Proc. Libr. Arch. 666, F3.24 (12 pages) (2001).Google Scholar
38. Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000).Google Scholar
Supplementary material: File

Ndione supplementary material

Ndione supplementary material 1

Download Ndione supplementary material(File)
File 4.7 MB