Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:24:01.574Z Has data issue: false hasContentIssue false

Towards the directed evolution of protein materials

Published online by Cambridge University Press:  08 April 2019

Anton Kan
Affiliation:
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
Neel S. Joshi*
Affiliation:
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
*
Address all correspondence to Neel S. Joshi at [email protected]
Get access

Abstract

Protein-based materials are a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.

Type
Synthetic Biology Prospective
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cheng, A.A. and Lu, T.K.: Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 14, 155178 (2012).Google Scholar
2.Chen, Y.-J.. Liu, P., Nielsen, A.A.K., Brophy, J.A.N., Clancy, K., Peterson, T., and Voigt, C.A.: Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659664 (2013).Google Scholar
3.Nielsen, A.A.K., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E.A., Ross, D., Densmore, D., and Voigt, C.A.: Genetic circuit design automation. Science 352, aac7341 (2016).Google Scholar
4.Esvelt, K.M. and Wang, H.H.: Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9, 641 (2013).Google Scholar
5.Mee, M.T., Collins, J.J., Church, G.M., and Wang, H.H.: Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149E2156 (2014).Google Scholar
6.Elowitz, M. and Lim, W.A.: Build life to understand it. Nature 468, 889890 (2010).Google Scholar
7.Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M.D., Tai, A., Main, A., Eng, D., Polichuk, D.R., Teoh, K.H., Reed, D.W., Treynor, T., Lenihan, J., Jiang, H., Fleck, M., Bajad, S., Dang, G., Dengrove, D., Diola, D., Dorin, G., Ellens, K.W., Fickes, S., Galazzo, J., Gaucher, S.P., Geistlinger, T., Henry, R., Hepp, M., Horning, T., Iqbal, T., Kizer, L., Lieu, B., Melis, D., Moss, N., Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L.F., Xu, L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P.S., Keasling, J.D., Reiling, K.K., Renninger, N.S., and Newman, J.D.: High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528532 (2013).Google Scholar
8.Ball, P.: Synthetic biology—Engineering nature to make materials. MRS Bull. 43, 477484 (2018).Google Scholar
9.Le Feuvre, R.A. and Scrutton, N.S.: A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol. 3, 105112 (2018).Google Scholar
10.Rice, M.K. and Ruder, W.C.: Creating biological nanomaterials using synthetic biology. Sci. Technol. Adv. Mater. 15, 014401 (2013).Google Scholar
11.MacEwan, S.R. and Chilkoti, A.: Applications of elastin-like polypeptides in drug delivery. J. Controlled Release 190, 314330 (2014).Google Scholar
12.DeFrates, K.G., Moore, R., Borgesi, J., Lin, G., Mulderig, T., Beachley, V., and Hu, X.: Protein-based fiber materials in medicine: a review. Nanomaterials (Basel, Switz.) 8, 457 (2018).Google Scholar
13.Romano, N.H., Sengupta, D., Chung, C., and Heilshorn, S.C.: Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810, 339349 (2011).Google Scholar
14.Chan, G. and Mooney, D.J.: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol. 26, 382392 (2008).Google Scholar
15.Caves, J.M., Kumar, V.A., Martinez, A.W., Kim, J., Ripberger, C.M., Haller, C.A., and Chaikof, E.L.: The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31, 71757182 (2010).Google Scholar
16.Gilbert, C. and Ellis, T.: Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 115 (2019).Google Scholar
17.Nguyen, P.Q., Courchesne, N.-M.D., Duraj-Thatte, A., Praveschotinunt, P., and Joshi, N.S.: Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).Google Scholar
18.Naleway, S.E., Porter, M.M., McKittrick, J., and Meyers, M.A.: Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 54555476 (2015).Google Scholar
19.Dill, K.A. and MacCallum, J.L.: The protein-folding problem, 50 years on. Science 338, 10421046 (2012).Google Scholar
20.Cobb, R.E., Sun, N., and Zhao, H.: Directed evolution as a powerful synthetic biology tool. Methods 60, 8190 (2013).Google Scholar
21.van Hest, J.C.M. and Tirrell, D.A.: Protein-based materials, toward a new level of structural control. Chem. Commun. 18971904 (2001).Google Scholar
22.Yang, Y.J., Holmberg, A.L., and Olsen, B.D.: Artificially engineered protein polymers. Annu. Rev. Chem. Biomol. Eng. 8, 549575 (2017).Google Scholar
23.Yang, L., Liu, A., Cao, S., Putri, R.M., Jonkheijm, P., and Cornelissen, J.J.L.M.: Self-assembly of proteins: towards supramolecular materials. Chem. – Eur. J. 22, 1557015582 (2016).Google Scholar
24.Ekiz, M.S., Cinar, G., Khalily, M.A., and Guler, M.O.: Self-assembled peptide nanostructures for functional materials. Nanotechnology 27, 402002 (2016).Google Scholar
25.Okesola, B.O. and Mata, A.: Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 47, 37213736 (2018).Google Scholar
26.Vepari, C. and Kaplan, D.L.: Silk as a biomaterial. Prog. Polym. Sci. 32, 9911007 (2007).Google Scholar
27.Tokareva, O., Michalczechen-Lacerda, V.A., Rech, E.L., and Kaplan, D.L.: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651663 (2013).Google Scholar
28.Peng, Q., Zhang, Y., Lu, L., Shao, H., Qin, K., Hu, X., and Xia, X.: Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci. Rep. 6, 36473 (2016).Google Scholar
29.Craig, C.L.: Evolution of arthropod silks. Annu. Rev. Entomol. 42, 231267 (1997).Google Scholar
30.Vollrath, F. and Selden, P.: The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38, 819846 (2007).Google Scholar
31.Hu, X., Vasanthavada, K., Kohler, K., McNary, S., Moore, A.M.F., and Vierra, C.A.: Molecular mechanisms of spider silk. Cell. Mol. Life Sci. 63, 19861999 (2006).Google Scholar
32.Römer, L. and Scheibel, T.: The elaborate structure of spider silk. Prion 2, 154161 (2008).Google Scholar
33.Gage, L.P. and Manning, R.F.: Internal structure of the silk fibroin gene of Bombyx mori. I. The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences. J. Biol. Chem. 255, 94449450 (1980).Google Scholar
34.Rudall, K.M. and Kenchington, W.: Arthropod silks: the problem of fibrous proteins in animal tissues. Annu. Rev. Entomol. 16, 7396 (1971).Google Scholar
35.Rising, A., Nimmervoll, H., Grip, S., Fernandez-Arias, A., Storckenfeldt, E., Knight, D.P., Vollrath, F., and Engström, W.: Spider silk proteins—mechanical property and gene sequence. Zool. Sci. 22, 273281 (2005).Google Scholar
36.Kowalczyk, T., Hnatuszko-Konka, K., Gerszberg, A., and Kononowicz, A.K.: Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol. 30, 21412152 (2014).Google Scholar
37.Hassouneh, W., Christensen, T., and Chilkoti, A.: Elastin-like Polypeptides as a Purification Tag for Recombinant Proteins. Curr. Protoc. Protein Sci. Editor. Board John E Coligan Al CHAPTER, Unit–6.11 (2010).Google Scholar
38.Saxena, R. and Nanjan, M.J.: Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv. 22, 156167 (2015).Google Scholar
39.Inostroza-Brito, K.E., Collin, E., Siton-Mendelson, O., Smith, K.H., Monge-Marcet, A., Ferreira, D.S., Rodríguez, R.P., Alonso, M., Rodríguez-Cabello, J.C., Reis, R.L., Sagués, F., Botto, L., Bitton, R., Azevedo, H.S., and Mata, A.: Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nat. Chem. 7, 897 (2015).Google Scholar
40.Wang, H., Paul, A., Nguyen, D., Enejder, A., and Heilshorn, S.C.: Tunable control of hydrogel microstructure by kinetic competition between self-assembly and crosslinking of elastin-like proteins. ACS Appl. Mater. Interfaces 10, 2180821815 (2018).Google Scholar
41.Quiroz, F.G. and Chilkoti, A.: Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164 (2015).Google Scholar
42.Li, N.K., Roberts, S., Quiroz, F.G., Chilkoti, A., and Yingling, Y.G.: Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides. Biomacromolecules 19, 24962505 (2018).Google Scholar
43.Shoulders, M.D. and Raines, R.T.: Collagen structure and stability. Annu. Rev. Biochem. 78, 929958 (2009).Google Scholar
44.Gelse, K., Pöschl, E., and Aigner, T.: Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 15311546 (2003).Google Scholar
45.Persikov, A.V., Ramshaw, J.A.M., and Brodsky, B.: Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 1934319349 (2005).Google Scholar
46.Lukomski, S., Nakashima, K., Abdi, I., Cipriano, V.J., Ireland, R.M., Reid, S.D., Adams, G.G., and Musser, J.M.: Identification and characterization of the scl gene encoding a group a streptococcus extracellular protein virulence factor with similarity to human collagen. Infect. Immun. 68, 65426553 (2000).Google Scholar
47.Yu, Z., An, B., Ramshaw, J.A.M., and Brodsky, B.: Bacterial collagen-like proteins that form triple-helical structures. J. Struct. Biol. 186, 451461 (2014).Google Scholar
48.Cosgriff-Hernandez, E., Hahn, M.S., Russell, B., Wilems, T., Munoz-Pinto, D., Browning, M.B., Rivera, J., and Höök, M.: Bioactive hydrogels based on designer collagens. Acta Biomater. 6, 39693977 (2010).Google Scholar
49.Barnhart, M.M. and Chapman, M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131147 (2006).Google Scholar
50.Collinson, S.K., Emödy, L., Müller, K.H., Trust, T.J., and Kay, W.W.: Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 173, 47734781 (1991).Google Scholar
51.Nguyen, P.Q., Botyanszki, Z., Tay, P.K.R., and Joshi, N.S.: Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).Google Scholar
52.Dorval Courchesne, N.-M., Duraj-Thatte, A., Tay, P.K.R., Nguyen, P.Q., and Joshi, N.S.: Scalable production of genetically engineered nanofibrous macroscopic materials via Filtration. ACS Biomater. Sci. Eng. 3, 733741 (2017).Google Scholar
53.Tay, P.K.R., Nguyen, P.Q., and Joshi, N.S.: A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 1841 (2017).Google Scholar
54.Duraj-Thatte, A.M., Praveschotinunt, P., Nash, T.R., Ward, F.R., and Joshi, N.S.: Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci. Rep. 8, 3475 (2018).Google Scholar
55.Zeng, G., Vad, B.S., Dueholm, M.S., Christiansen, G., Nilsson, M., Tolker-Nielsen, T., Nielsen, P.H., Meyer, R.L., and Otzen, D.E.: Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 6, 1099 (2015).Google Scholar
56.Axpe, E., Duraj-Thatte, A., Chang, Y., Kaimaki, D.-M., Sanchez-Sanchez, A., Caliskan, H.B., Dorval Courchesne, N.-M., and Joshi, N.S.: Fabrication of amyloid curli fibers–alginate nanocomposite hydrogels with enhanced stiffness. ACS Biomater. Sci. Eng. 4, 21002105 (2018).Google Scholar
57.Dueholm, M.S., Albertsen, M., Otzen, D., and Nielsen, P.H.: Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS ONE 7, e51274 (2012).Google Scholar
58.King, N.P., Bale, J.B., Sheffler, W., McNamara, D.E., Gonen, S., Gonen, T., Yeates, T.O., and Baker, D.: Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103108 (2014).Google Scholar
59.Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K., Renfrew, P.D., Smith, C.A., Sheffler, W., Davis, I.W., Cooper, S., Treuille, A., Mandell, D.J., Richter, F., Ban, Y.-E. A., Fleishman, S.J., Corn, J.E., Kim, D.E., Lyskov, S., Berrondo, M., Mentzer, S., Popović, Z., Havranek, J.J., Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J.J., Kuhlman, B., Baker, D., and Bradley, P.: Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545574 (2011).Google Scholar
60.Shen, H., Fallas, J.A., Lynch, E., Sheffler, W., Parry, B., Jannetty, N., Decarreau, J., Wagenbach, M., Vicente, J.J., Chen, J., Wang, L., Dowling, Q., Oberdorfer, G., Stewart, L., Wordeman, L., Yoreo, J.D., Jacobs-Wagner, C., Kollman, J., and Baker, D.: De novo design of self-assembling helical protein filaments. Science 362, 705709 (2018).Google Scholar
61.Cristie-David, A.S., Sciore, A., Badieyan, S., Escheweiler, J.D., Koldewey, P., Bardwell, J.C.A., Ruotolo, B.T., and Marsh, E.N.G.: Evaluation of de novo-designed coiled coils as off-the-shelf components for protein assembly. Mol. Syst. Des. Eng. 2, 140148 (2017).Google Scholar
62.Fletcher, J.M., Harniman, R.L., Barnes, F.R.H., Boyle, A.L., Collins, A., Mantell, J., Sharp, T.H., Antognozzi, M., Booth, P.J., Linden, N., Miles, M.J., Sessions, R.B., Verkade, P., and Woolfson, D.N.: Self-assembling cages from coiled-coil peptide modules. Science 340, 595599 (2013).Google Scholar
63.Thomas, F., Dawson, W.M., Lang, E.J.M., Burton, A.J., Bartlett, G.J., Rhys, G.G., Mulholland, A.J., and Woolfson, D.N.: De novo-designed α-helical barrels as receptors for small molecules. ACS Synth. Biol. 7, 1808 (2018).Google Scholar
64.Ljubetič, A., Lapenta, F., Gradišar, H., Drobnak, I., Aupič, J., Strmšek, Ž., Lainšček, D., Hafner-Bratkovič, I., Majerle, A., Krivec, N., Benčina, M., Pisanski, T., Veličković, T. Ć., Round, A., Carazo, J.M., Melero, R., and Jerala, R.: Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 35, 1094 (2017).Google Scholar
65.Rabotyagova, O.S., Cebe, P., and Kaplan, D.L.: Protein-based block copolymers. Biomacromolecules 12, 269289 (2011).Google Scholar
66.Valluzzi, R., Winkler, S., Wilson, D., and Kaplan, D.L.: Silk: molecular organization and control of assembly. Philos. Trans. R. Soc. B: Biol. Sci. 357, 165167 (2002).Google Scholar
67.Rabotyagova, O.S., Cebe, P., and Kaplan, D.L.: Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10, 229236 (2009).Google Scholar
68.Huber, M.C., Schreiber, A., von Olshausen, P., Varga, B.R., Kretz, O., Joch, B., Barnert, S., Schubert, R., Eimer, S., Kele, P., and Schiller, S.M.: Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat. Mater. 14, 125 (2015).Google Scholar
69.Dinjaski, N. and Kaplan, D.L.: Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol. 39, 17 (2016).Google Scholar
70.Chen, A.Y., Deng, Z., Billings, A.N., Seker, U.O.S., Lu, M.Y., Citorik, R.J., Zakeri, B., and Lu, T.K.: Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515523 (2014).Google Scholar
71.Polka, J.K., Hays, S.G., and Silver, P.A.: Building spatial synthetic biology with compartments, scaffolds, and communities. Cold Spring Harb. Perspect. Biol. 8, a024018 (2016).Google Scholar
72.Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N., and Levy, E.D.: Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244 (2017).Google Scholar
73.Suzuki, Y., Cardone, G., Restrepo, D., Zavattieri, P.D., Baker, T.S., and Tezcan, F.A.: Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369373 (2016).Google Scholar
74.Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., Moy, V.T., and Howarth, M.: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 109, E690E697 (2012).Google Scholar
75.Sun, F., Zhang, W.-B., Mahdavi, A., Arnold, F.H., and Tirrell, D.A.: Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc. Natl. Acad. Sci. USA 111, 1126911274 (2014).Google Scholar
76.Cobb, R.E., Chao, R. and Zhao, H.: Directed evolution: past, present and future. AIChE J. Am. Inst. Chem. Eng. 59, 14321440 (2013).Google Scholar
77.Tee, K.L. and Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 17071721 (2013).Google Scholar
78.Packer, M.S. and Liu, D.R.: Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379394 (2015).Google Scholar
79.Arnold, F.H.: Design by directed evolution. Acc. Chem. Res. 31, 125131 (1998).Google Scholar
80.Currin, A., Swainston, N., Day, P.J., and Kell, D.B.: Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 11721239 (2015).Google Scholar
81.Stemmer, W.P.C.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389391 (1994).Google Scholar
82.Zhao, H. and Arnold, F.H.: Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 13071308 (1997).Google Scholar
83.Crameri, A., Raillard, S.-A., Bermudez, E., and Stemmer, W.P.C.: DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288291 (1998).Google Scholar
84.Engler, C., Gruetzner, R., Kandzia, R., and Marillonnet, S.: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).Google Scholar
85.Ostermeier, M., Shim, J.H., and Benkovic, S.J.: A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205 (1999).Google Scholar
86.Bikard, D., Julié-Galau, S., Cambray, G., and Mazel, D.: The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res. 38, e153e153 (2010).Google Scholar
87.Foster, P.L.: In vivo mutagenesis. Methods Enzymol. 204, 114125 (1991).Google Scholar
88.Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., and Church, G.M.: Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894898 (2009).Google Scholar
89.Halperin, S.O., Tou, C.J., Wong, E.B., Modavi, C., Schaffer, D.V., and Dueber, J.E.: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248 (2018).Google Scholar
90.Lutz, S.: Beyond directed evolution—semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21, 734743 (2010).Google Scholar
91.Heinzelman, P., Snow, C.D., Wu, I., Nguyen, C., Villalobos, A., Govindarajan, S., Minshull, J., and Arnold, F.H.: A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA 106, 56105615 (2009).Google Scholar
92.Tizei, P.A.G., Csibra, E., Torres, L., and Pinheiro, V.B.: Selection platforms for directed evolution in synthetic biology. Biochem. Soc. Trans. 44, 11651175 (2016).Google Scholar
93.Raman, S., Rogers, J.K., Taylor, N.D., and Church, G.M.: Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111, 1780317808 (2014).Google Scholar
94.Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T.C., and Waldo, G.S.: Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 7988 (2006).Google Scholar
95.Morgan, S.-A., Nadler, D.C., Yokoo, R., and Savage, D.F.: Biofuel metabolic engineering with biosensors. Curr. Opin. Chem. Biol. 35, 150158 (2016).Google Scholar
96.Devenish, S.R.A., Kaltenbach, M., Fischlechner, M., and Hollfelder, F.: Droplets as Reaction Compartments for Protein Nanotechnology. In Protein Nanotechnology: Protocols, Instrumentation, and Applications, 2nd ed., edited by Gerrard, J A. (Humana Press, 2013), pp. 269286.Google Scholar
97.O'Neil, K.T. and Hoess, R.H.: Phage display: protein engineering by directed evolution. Curr. Opin. Struct. Biol. 5, 443449 (1995).Google Scholar
98.Fernandez-Gacio, A., Uguen, M., and Fastrez, J.: Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol. 21, 408414 (2003).Google Scholar
99.Esvelt, K.M., Carlson, J.C., and Liu, D.R.: A system for the continuous directed evolution of biomolecules. Nature 472, 499 (2011).Google Scholar
100.Leemhuis, H., Stein, V., Griffiths, A.D., and Hollfelder, F.: New genotype–phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 15, 472478 (2005).Google Scholar
101.Kosuri, S., Goodman, D.B., Cambray, G., Mutalik, V.K., Gao, Y., Arkin, A.P., Endy, D., and Church, G.M.: Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 110, 14024 (2013).Google Scholar
102.Zinchenko, A., Devenish, S.R.A., Kintses, B., Colin, P.-Y., Fischlechner, M., and Hollfelder, F.: One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal. Chem. 86, 25262533 (2014).Google Scholar
103.Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.-C., Marquez, M., Klibanov, A.M., Griffiths, A.D., and Weitz, D.A.: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 107, 40044009 (2010).Google Scholar
104.Colin, P.-Y., Kintses, B., Gielen, F., Miton, C.M., Fischer, G., Mohamed, M.F., Hyvönen, M., Morgavi, D.P., Janssen, D.B., and Hollfelder, F.: Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).Google Scholar
105.Gielen, F., Hours, R., Emond, S., Fischlechner, M., Schell, U., and Hollfelder, F.: Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. USA 113, E7383E7389 (2016).Google Scholar
106.Girault, M., Kim, H., Arakawa, H., Matsuura, K., Odaka, M., Hattori, A., Terazono, H., and Yasuda, K.: An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci. Rep. 7, 40072 (2017).Google Scholar
107.Xi, H.-D., Zheng, H., Guo, W., Gañán-Calvo, A.M., Ai, Y., Tsao, C.-W., Zhou, J., Li, W., Huang, Y., Nguyen, N.-T., and Tan, S.H.: Active droplet sorting in microfluidics: a review. Lab Chip 17, 751771 (2017).Google Scholar
108.Terekhov, S.S., Smirnov, I.V., Stepanova, A.V., Bobik, T.V., Mokrushina, Y.A., Ponomarenko, N.A., Belogurov, A.A., Rubtsova, M.P., Kartseva, O.V., Gomzikova, M.O., Moskovtsev, A.A., Bukatin, A.S., Dubina, M.V., Kostryukova, E.S., Babenko, V.V., Vakhitova, M.T., Manolov, A.I., Malakhova, M.V., Kornienko, M.A., Tyakht, A.V., Vanyushkina, A.A., Ilina, E.N., Masson, P., Gabibov, A.G., and Altman, S.: Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl. Acad. Sci. USA 114, 25502555 (2017).Google Scholar
109.Romero, P.A. and Arnold, F.H.: Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866876 (2009).Google Scholar
110.Bloom, J.D. and Arnold, F.H.: In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA 106, 999510000 (2009).Google Scholar
111.Kauffman, S. and Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 1145 (1987).Google Scholar
112.Heddle, J.G., Chakraborti, S., and Iwasaki, K.: Natural and artificial protein cages: design, structure and therapeutic applications. Curr. Opin. Struct. Biol. 43, 148155 (2017).Google Scholar
113.Wörsdörfer, B., Woycechowsky, K.J., and Hilvert, D.: Directed evolution of a protein container. Science 331, 589592 (2011).Google Scholar
114.Butterfield, G.L., Lajoie, M.J., Gustafson, H.H., Sellers, D.L., Nattermann, U., Ellis, D., Bale, J.B., Ke, S., Lenz, G.H., Yehdego, A., Ravichandran, R., Pun, S.H., King, N.P., and Baker, D.: Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415420 (2017).Google Scholar
115.Bale, J.B., Gonen, S., Liu, Y., Sheffler, W., Ellis, D., Thomas, C., Cascio, D., Yeates, T.O., Gonen, T., King, N.P., and Baker, D.: Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389394 (2016).Google Scholar
116.Tang, N.C. and Chilkoti, A.: Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. Nat. Mater. 15, 419 (2016).Google Scholar
117.Bednarska, N.G., Schymkowitz, J., Rousseau, F., and Van Eldere, J.: Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159, 17951806 (2013).Google Scholar
118.Evans, M.L., Chorell, E., Taylor, J.D., Åden, J., Götheson, A., Li, F., Koch, M., Sefer, L., Matthews, S.J., Wittung-Stafshede, P., Almqvist, F., and Chapman, M.R.: The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57, 445455 (2015).Google Scholar
119.Kintses, B., Hein, C., Mohamed, M.F., Fischlechner, M., Courtois, F., Lainé, C., and Hollfelder, F.: Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19, 10011009 (2012).Google Scholar
120.Joseph, Cappello, John, Crissman, Mary, Dorman, Marcia, Mikolajczak, Garret, Textor, Magda, Marquet, and Franco, Ferrari: Genetic engineering of structural protein polymers. Biotechnol. Prog. 6, 198202 (1990).Google Scholar
121.Huber, M.C., Schreiber, A., Wild, W., Benz, K., and Schiller, S.M.: Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials. Biomaterials 35, 87678779 (2014).Google Scholar
122.Darling, E.M. and Di Carlo, D.: High-throughput assessment of cellular mechanical properties. Annu. Rev. Biomed. Eng. 17, 3562 (2015).Google Scholar
123.Nitta, N., Sugimura, T., Isozaki, A., Mikami, H., Hiraki, K., Sakuma, S., Iino, T., Arai, F., Endo, T., Fujiwaki, Y., Fukuzawa, H., Hase, M., Hayakawa, T., Hiramatsu, K., Hoshino, Y., Inaba, M., Ito, T., Karakawa, H., Kasai, Y., Koizumi, K., Lee, S., Lei, C., Li, M., Maeno, T., Matsusaka, S., Murakami, D., Nakagawa, A., Oguchi, Y., Oikawa, M., Ota, T., Shiba, K., Shintaku, H., Shirasaki, Y., Suga, K., Suzuki, Y., Suzuki, N., Tanaka, Y., Tezuka, H., Toyokawa, C., Yalikun, Y., Yamada, M., Yamagishi, M., Yamano, T., Yasumoto, A., Yatomi, Y., Yazawa, M., Di Carlo, D., Hosokawa, Y., Uemura, S., Ozeki, Y., and Goda, K.: Intelligent image-activated cell sorting. Cell, 175, 266276.e13 (2018).Google Scholar
124.Dudani, J.S., Gossett, D.R., Tse, H.T.K., and Carlo, D.D.: Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13, 37283734 (2013).Google Scholar
125.Hwang, M.Y., Kim, S.G., Lee, H.S., and Muller, S.J.: Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. Soft Matter 14, 216 (2017). doi: 10.1039/C7SM01829K.Google Scholar
126.Wu, P.-H., Hale, C.M., Chen, W.-C., Lee, J.S.H., Tseng, Y., and Wirtz, D.: High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155 (2012).Google Scholar
127.Liu, T., Liu, X., Spring, D.R., Qian, X., Cui, J., and Xu, Z.: Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci. Rep. 4, 5418 (2014).Google Scholar
128.Ding, X., Peng, Z., Lin, S.-C. S., Geri, M., Li, S., Li, P., Chen, Y., Dao, M., Suresh, S., and Huang, T.J.: Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA 111, 1299212997 (2014).Google Scholar
129.Islam, M., Brink, H., Blanche, S., DiPrete, C., Bongiorno, T., Stone, N., Liu, A., Philip, A., Wang, G., Lam, W., Alexeev, A., Waller, E.K., and Sulchek, T.: Microfluidic sorting of cells by viability based on differences in cell stiffness. Sci. Rep. 7, 1997 (2017).Google Scholar
130.Gill, N.K., Ly, C., Nyberg, K.D., Lee, L., Qi, D., Tofig, B., Reis-Sobreiro, M., Dorigo, O., Rao, J., Wiedemeyer, R., Karlan, B., Lawrenson, K., Freeman, M.R., Damoiseaux, R., and Rowat, A.C.: A scalable filtration method for high throughput screening based on cell deformability. Lab Chip 19, 343357 (2019).Google Scholar
131.Vahey, M.D. and Voldman, J.: High-throughput cell and particle characterization using ISO-dielectric separation. Anal. Chem. 81, 24462455 (2009).Google Scholar
132.Vahey, M.D., Pesudo, L.Q., Svensson, J.P., Samson, L.D., and Voldman, J.: Microfluidic genome-wide profiling of intrinsic electrical properties in Saccharomyces cerevisiae. Lab Chip 13, 27542763 (2013).Google Scholar
133.Tay, A., Murray, C., and Di Carlo, D.: Phenotypic selection of Magnetospirillum magneticum (AMB-1) overproducers using magnetic ratcheting. Adv. Funct. Mater. 27, 1703106 (2017).Google Scholar
134.Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C., and Feldman, M.W.: Evolutionary rate in the protein interaction network. Science 296, 750752 (2002).Google Scholar
135.Drummond, D.A., Bloom, J.D., Adami, C., Wilke, C.O., and Arnold, F.H.: Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102, 1433814343 (2005).Google Scholar
136.Nguyen, P.Q.. Synthetic biology engineering of biofilms as nanomaterials factories. Biochem. Soc. Trans. 45, 585597 (2017).Google Scholar
137.Shin, J. and Noireaux, V.: An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 2941 (2012).Google Scholar
138.Schaerli, Y. and Hollfelder, F.: The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 5, 13921404 (2009).Google Scholar
139.Mach, A.J., Kim, J.H., Arshi, A., Hur, S.C., and Carlo, D.D.: Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11, 28272834 (2011).Google Scholar
140.Cheney, N., MacCurdy, R., Clune, J., and Lipson, H.: Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, NY, USA, 2013), pp. 167174.Google Scholar
141.Mackenzie, G., Boa, A.N., Diego-Taboada, A., Atkin, S.L., and Sathyapalan, T.: Sporopollenin, The least known yet toughest natural biopolymer. Front. Mater. 2, 66 (2015).Google Scholar
142.Nokelainen, M., Tu, H., Vuorela, A., Notbohm, H., Kivirikko, K.I., and Myllyharju, J.: High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18, 797806 (2001).Google Scholar