Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T07:48:46.611Z Has data issue: false hasContentIssue false

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation

Published online by Cambridge University Press:  30 July 2018

Xiaohui Wu
Affiliation:
Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
Yang Si
Affiliation:
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
Jianyong Yu
Affiliation:
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
Bin Ding*
Affiliation:
Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
*
Address all correspondence to Prof. Bin Ding at [email protected]
Get access

Abstract

Effective degradation of organic pollutants in wastewater is of great importance to the environment and human society. TiO2-based electrospun nanofibrous materials combining the properties of the large specific surface area, high aspect ratio, tunable compositions and structures, as well as easy to recycle, show great promise for the efficient removal of organic pollutants. In this Prospective paper, the recent progress in the degradation of organic water contaminants over visible-light-responsive TiO2-based nanofibrous materials is summarized, with emphasis on the strategies for improving the visible-light photocatalytic activity of TiO2-based nanofibrous materials. Finally, the current challenges and future outlook in this field are discussed.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Garcia, S. and Brillas, E.: Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C, Photochem. 31, 1 (2017).Google Scholar
2.Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., and Wehrli, B.: Global water pollution and human health. Annu. Rev. Env. Resour. 35, 109 (2010).Google Scholar
3.Robinson, T., McMullan, G., Marchant, R., and Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247 (2001).Google Scholar
4.Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., Bolchi, M., and Gawlik, B.M.: Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 44, 4115 (2010).Google Scholar
5.Khin, M.M., Nair, A.S., Bahu, V.J., Murugan, R., and Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075 (2012).Google Scholar
6.Klavarioti, M., Mantzavinos, D., and Kassinos, D.: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402 (2009).Google Scholar
7.Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter, T., and Kalagara, S.: Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 91, 94 (2016).Google Scholar
8.Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O′Shea, K., Entezari, M.H., and Dionysiou, D.D.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331 (2012).Google Scholar
9.Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., and He, Y.: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128 (2015).Google Scholar
10.Wang, X., Li, Z., Shi, J., and Yu, Y.: One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346 (2014).Google Scholar
11.Lee, K., Mazare, A., and Schmuki, P.: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385 (2014).Google Scholar
12.Wang, N., Si, Y., Wang, N., Sun, G., El-Newehy, M., Al-Deyab, S.S., and Ding, B.: Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep. Purif. Technol. 126, 44 (2014).Google Scholar
13.Ding, B., Gong, J., Kim, J., and Shiratori, S.: Polyoxometalate nanotubes from layer-by-layer coating and thermal removal of electrospun nanofibres. Nanotechnology 16, 785 (2005).Google Scholar
14.Si, Y., Wang, X., Yan, C., Yang, L., Yu, J., and Ding, B.: Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512 (2016).Google Scholar
15.Zhang, X., Li, X., Shao, C., Li, J., Zhang, M., Zhang, P., Wang, K., Lu, N., and Liu, Y.: One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J. Hazard. Mater. 260, 892 (2013).Google Scholar
16.Ding, B., Li, C., Fujita, S., and Shiratori, S.: Layer-by-layer self-assembled tubular films containing polyoxometalate on electrospun nanofibers. Colloids Surf. A 284, 257 (2006).Google Scholar
17.Boyer, S.M., Liu, J., Zhang, S., Ehrlich, M.I., McCarthy, D.L., Tong, L., DeCoste, J.B., Bernier, W.E., and Jones, W.E. Jr.: The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. J. Photochem. Photobiol. A Chem. 329, 46 (2016).Google Scholar
18.Liu, Z., Miao, Y., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., and Liu, T.: Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J. Colloid Interface Sci. 424, 49 (2014).Google Scholar
19.Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).Google Scholar
20.Gopal, M., Chan, W.J.M., and DeJonghe, L.C.: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001 (1997).Google Scholar
21.Tompsett, G.A., Bowmaker, G.A., Cooney, R.P., Metson, J.B., Rodgers, K.A., and Seakins, J.M.: The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 26, 57 (1995).Google Scholar
22.Feist, T.P. and Davies, P.K.: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275 (1992).Google Scholar
23.Wang, W., Tadé, M., and Shao, Z.: Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog. Mater. Sci. 92, 33 (2018).Google Scholar
24.Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V.B., Kajitvichyanukul, P., and Krishnan-Ayer, R.: Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C, Photochem. Rev. 9, 171 (2008).Google Scholar
25.Tachikawa, T., Fujitsuka, M., and Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259 (2007).Google Scholar
26.Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).Google Scholar
27.Alves, A.K., Berutti, F.A., and Bergmann, C.P.: Visible and UV photocatalytic characterization of Sn-TiO2 electrospun fiber. Catal. Today 208, 7 (2013).Google Scholar
28.Ma, D., Xin, Y., Gao, M., and Wu, J.: Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. B Environ. 147, 49 (2014).Google Scholar
29.Zhang, M., Shao, C., Guo, Z., Zhang, Z., Mu, J., Cao, T., and Liu, Y.: Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl. Mater. Interfaces 3, 369 (2011).Google Scholar
30.Baiyila, D., Wang, X., Li, X., Sharileaodu, B., Li, X., Xu, L., Liu, Z., Duan, L., and Liu, J.: Electrospun TiO2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst. J. Mater. Chem. A 2, 12304 (2014).Google Scholar
31.Shang, M., Wang, W., Zhang, L., Sun, S., Wang, L., and Zhou, L.: 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 113, 14727 (2009).Google Scholar
32.Zhang, L., Li, Y., Zhang, Q., and Wang, H.: Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15, 5986 (2013).Google Scholar
33.Misra, M., Singh, N., and Gupta, R.K.: Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal. Sci. Technol. 7, 570 (2017).Google Scholar
34.Chen, X. and Mao, S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).Google Scholar
35.Shahini, P., Ashkarran, A.A., Hamidinezhad, H., and Bahari, A.: The role of iron functionalization on the visible-light photocatalytic performance of TiO2 nanofibers suitable for environmental applications. Res. Chem. Intermed. 42, 8273 (2016).Google Scholar
36.Zhang, Z., Shao, C., Zhang, L., Li, X., and Liu, Y.: Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351, 57 (2010).Google Scholar
37.Ruggieri, F., Camillo, D.D., Maccarone, L., Santucci, S., and Lozzi, L.: Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G. J. Nanopart. Res. 15, 1982 (2013).Google Scholar
38.Worayingyong, A., Sang-urai, S., Smith, M.F., Maensiri, S., and Seraphin, S.: Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers. Appl. Phys. A 117, 1191 (2014).Google Scholar
39.Choi, J., Sudhagar, P., Lakshmipathiraj, P., Lee, J.W., Devadoss, A., Lee, S., Song, T., Hong, S., Eito, S., Terashima, C., Han, T.H., Kang, J.K., Fujishima, A., Kang, Y.S., and Paik, U.: Three-dimensional Gd-doped TiO2 fibrous photoelectrodes for efficient visible light-driven photocatalytic performance. RSC Adv. 4, 11750 (2014).Google Scholar
40.Lee, D.Y., Kim, B.Y., Cho, N.I., and Oh, Y.J.: Electrospun Er3+-TiO2 nanofibrous films as visible light induced photocatalysts. Curr. Appl. Phys. 11, S324 (2011).Google Scholar
41.Xu, J., Wang, W., Shang, M., Gao, E., Zhang, Z., and Ren, J.: Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 196, 426 (2011).Google Scholar
42.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).Google Scholar
43.Camillo, D.D., Ruggieri, F., Santucci, S., and Lozzi, L.: N-doped TiO2 nanofibers deposited by electrospinning. J. Phys. Chem. C 116, 18427 (2012).Google Scholar
44.Dai, Y.R. and Yin, L.F.: Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress. Catal. Sci. Technol. 4, 456 (2014).Google Scholar
45.Li, H., Zhang, W., Huang, S., and Pan, W.: Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers. Nanoscale 4, 801 (2012).Google Scholar
46.Yu, Q., Jin, X., Li, S., Wang, L., and Liang, K.: The photocatalytic properties of Fe3+ and N co-doped TiO2 micro/nanofiber film for dye waste water decomposition. Adv. Mater. Res. 356–360, 853 (2012).Google Scholar
47.Zhang, Q., Zhou, S., Fu, S.F., and Wang, X.Z.: Tetranitrophthalocyanine zinc/TiO2 nanofibers organic-inorganic heterostructures with enhanced visible photocatalytic activity. Nano 12, 1750117 (2017).Google Scholar
48.Su, C., Shao, C., and Liu, Y.: Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J. Colloid Interface Sci. 359, 220 (2011).Google Scholar
49.Li, H., Zhu, Y., Cao, H., Yang, X., and Li, C.: Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fiber. Mater. Res. Bull. 48, 232 (2013).Google Scholar
50.Likodimos, V.: Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B Environ. 230, 269 (2018).Google Scholar
51.Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I.N., Wu, L.Z., Tung, C.H., and Zhang, T.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454 (2016).Google Scholar
52.Hu, S., Wei, Z., Chang, Q., Trinchi, A., and Yang, J.: A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 378, 402 (2016).Google Scholar
53.Wan, H., Wang, N., Yang, J., Si, Y., Chen, K., Ding, B., Sun, G., El-Newehy, M., Al-Deyab, S.S., and Yu, J.: Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J. Colloid Interface Sci. 417, 18 (2014).Google Scholar
54.Mu, J., Chen, B., Zhang, M., Guo, Z., Zhang, P., Zhang, Z., Sun, Y., Shao, C., and Liu, Y.: Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 4, 424 (2012).Google Scholar
55.Li, X., Lin, H., Chen, X., Niu, H., Liu, J., Zhang, T., and Qu, F.: Dendritic α-Fe2O3/TiO2 nanocomposites with improved visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 9176 (2016).Google Scholar
56.Tian, F., Hou, D., Hu, F., Xie, K., Qiao, X., and Li, D.: Porous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 391, 295 (2017).Google Scholar
57.Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., and Li, Q.: In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 8, 1199 (2015).Google Scholar
58.Su, C., Liu, L., Zhang, M., Zhang, Y., and Shao, C.: Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14, 3989 (2012).Google Scholar
59.Yang, Z., Lu, J., Ye, W., Yu, C., and Chang, Y.: Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci. 392, 472 (2017).Google Scholar
60.Shahini, P. and Ashkarran, A.A.: Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst. Colloids Surf. A 537, 155 (2018).Google Scholar
61.Wang, Y., Liu, L., Huang, Y., Li, X., Cao, X., Xu, L., Meng, C., Wang, Z., and Zhu, W.: Ag0.35V2O5/TiO2 branched nanoheterostructures: facile fabrication and efficient visible light photocatalytic activity. Mater. Lett. 128, 358 (2014).Google Scholar
62.Li, B., Hao, Y., Zhang, B., Shao, X., and Hu, L.: A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofiber. Appl. Catal. A Gen. 531, 1 (2017).Google Scholar
63.Li, X., Chen, X., Niu, H., Han, X., Zhang, T., Liu, J., Lin, H., and Qu, F.: The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J. Colloid Interface Sci. 452, 89 (2015).Google Scholar
64.Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., Sun, Z., Wang, H., and Guo, Z.: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B Environ. 201, 470 (2017).Google Scholar
65.Liao, C., Ma, Z., Dong, G., and Qiu, J.: BiOI nanosheets decorated TiO2 nanofiber: tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects. Appl. Surf. Sci. 314, 481 (2014).Google Scholar
66.Wang, Y., Su, Y.R., Qiao, L., Liu, L.X., Su, Q., Zhu, C.Q., and Liu, X.Q.: Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology 22, 225702 (2011).Google Scholar
67.Lv, Y., Xu, Z., Irie, S., and Nakane, K.: Fabrication of PdOx loaded highly mesoporous WO3/TiO2 hybrid nanofibers by stepwise pore-generation for enhanced photocatalytic performance. Mol. Catal. 438, 173 (2017).Google Scholar
68.Wang, Y., Zhang, J., Liu, L., Zhu, C., Liu, X., and Su, Q.: Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning. Mater. Lett. 75, 95 (2012).Google Scholar
69.Yang, G., Zhang, Q., Chang, W., and Yan, W.: Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J. Alloy. Compd. 580, 29 (2013).Google Scholar
70.Chang, W., Ren, X., Yang, G., Yan, W., and Sun, R.: Synthesis and photocatalytic activity of ZnxCd1−xS/TiO2 heterostructures nanofibre prepared by combining electrospinning and hydrothermal method. S. Afr. J. Chem. 68, 138 (2015).Google Scholar
71.Zhang, Z., Shao, C., Li, X., Sun, Y., Zhang, M., Mu, J., Zhang, P., Guo, Z., and Liu, Y.: Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5, 606 (2013).Google Scholar
72.Kongkanand, A., Domínguez, R.M., and Kamat, P.V.: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 7, 676 (2007).Google Scholar
73.Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., and Xu, J.: Adsorption behavior and mechanism of chloramphenicols sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 310, 235 (2016).Google Scholar
74.Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., and Liu, Y.: TiO2@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties. Nanoscale 3, 2943 (2011).Google Scholar
75.Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., Sun, Y., and Liu, Y.: Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J. Mater. Chem. 21, 17746 (2011).Google Scholar
76.Zhao, Z., Li, Z., and Zou, Z.: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).Google Scholar
77.Noguchi, Y., Goto, T., Miyayama, M., Hoshikawa, A., and Kamiyama, T.: Ferroelectric distortion and electronic structure in Bi4Ti3O12. J. Electroceram. 21, 49 (2008).Google Scholar
78.Luo, S., Chen, J., Huang, Z., Liu, C., and Fang, M.: Controllable synthesis of titania-supported bismuth oxyiodide heterostructured nanofibers with highly exposed (110) bismuth oxyiodide facets for enhanced photocatalytic activity. ChemCatChem 8, 3780 (2016).Google Scholar
79.Wang, Y., Sunarso, J., Zhao, B., Ge, C., and Chen, G.: One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: controllable synthesis and enhanced visible photocatalytic activity. Ceram. Int. 43, 15769 (2017).Google Scholar
80.Li, Y.-J., Cao, T.-P., Shao, C.-L., and Wang, C.-H.: Preparation and photocatalytic properties of γ-Bi2O3/TiO2 composite fibers. J. Inorg. Mater. 27, 687 (2012).Google Scholar
81.Cao, T., Li, Y., Wang, C., Zhang, Z., Zhang, M., Shao, C., and Liu, Y.: Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. J. Mater. Chem. 21, 6922 (2011).Google Scholar
82.Zhou, D., Zhang, H., Tu, Y., Tian, Y., Cai, Y., Hu, Z., and Zhu, X.: In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res. Lett. 11, 193 (2016).Google Scholar
83.Guo, Z., Li, P., Che, H., Wang, G., Wu, C., Zhang, X., and Mu, J.: One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42, 4517 (2016).Google Scholar
84.Zhang, M., Shao, C., Mu, J., Zhang, Z., Guo, Z., Zhang, P., and Liu, Y.: One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605 (2012).Google Scholar
85.Yang, Y., Liu, Y., Wei, J., Pan, C., Xiong, R., and Shi, J.: Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941 (2014).Google Scholar
86.Zhang, R., Wang, X., Song, J., Si, Y., Zhuang, X., Yu, J., and Ding, B.: In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3, 22136 (2015).Google Scholar
87.Kokubo, H., Ding, B., Naka, T., Tsuchihira, H., and Shiratori, S.: Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells. Nanotechnology 18, 165604 (2007).Google Scholar
88.Kanehata, M., Ding, B., and Shiratori, S.: Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 18, 315602 (2007).Google Scholar
89.Zhang, Y., Liu, S., Xiu, Z., Lu, Q., Sun, H., and Liu, G.: TiO2/BiOI heterostructured nanofibers: electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation. J. Nanopart. Res. 16, 2375 (2014).Google Scholar
90.Xie, J., Yang, Y., He, H., Cheng, D., Mao, M., Jiang, Q., Song, L., and Xiong, J.: Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355, 921 (2015).Google Scholar
91.Su, Z., Li, H., Chen, P., Hu, S., and Yan, Y.: Novel heterostructured InN/TiO2 submicron fibers designed for high performance visible-light-driven photocatalysis. Catal. Sci. Technol. 7, 5105 (2017).Google Scholar
92.Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z., and Wang, H.: Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B, Environ. 217, 388 (2017).Google Scholar
93.Adhikari, S.P., Awasthi, G.P., Kim, H.J., Park, C.H., and Kim, C.S.: Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32, 6163 (2016).Google Scholar
94.Wang, C., Hu, L., Chai, B., Yan, J., and Li, J.: Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light. Appl. Surf. Sci. 430, 243 (2018).Google Scholar
95.Zhou, X., Shao, C., Li, X., Wang, X., Guo, X., and Liu, Y.: Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J. Hazard. Mater. 344, 113 (2018).Google Scholar
96.Song, J., Wang, X., Yan, J., Yu, J., Sun, G., and Ding, B.: Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7, 1636 (2017).Google Scholar
97.Shan, H., Wang, X., Shi, F., Yan, J., Yu, J., and Ding, B.: Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9, 18966 (2017).Google Scholar
98.Si, Y., Mao, X., Zheng, H., Yu, J., and Ding, B.: Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5, 6027 (2015).Google Scholar