Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T07:45:57.377Z Has data issue: false hasContentIssue false

Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications

Published online by Cambridge University Press:  19 December 2016

Manpreet Kaur
Affiliation:
Stretchable Devices Laboratory, School of Mechatronic System Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada
Seung Min Han
Affiliation:
Graduate School of Energy, Environment, Water and Sustainability, Korea Advanced Institute of Science & Technology, Daejeon 305-338, Korea
Woo Soo Kim*
Affiliation:
Stretchable Devices Laboratory, School of Mechatronic System Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada
*
Address all correspondence to Woo Soo Kim at [email protected]
Get access

Abstract

Three-dimensional (3D) printing generates cellular architected metamaterials with complex geometries by introducing controlled porosity. Their ordered architecture, imitative from the hierarchical high-strength structure in nature, defines the mechanical properties that can be coupled with other properties such as the acoustic, thermal, or biologic response. Recent progress in the field of 3D architecture materials have advanced that enables for design of lightweight materials with high strength and stiffness at low densities. Applications of these materials have been identified in the fields of ultra-lightweight structures, thermal management, electrochemical devices, and high absorption capacity.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Valdevit, L., Jacobsen, A.J., Greer, J.R., and Carter, W.B.: Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, 15 (2011).Google Scholar
2. Wang, K., Zhao, Y., Chang, Y-H., Qian, Z., Zhang, C., Wang, B., Vannan, M.A., and Wang, M.J.: Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater. Des. 90, 704 (2016).Google Scholar
3. Murr, L.E., Gaytan, S.M., Medina, F., Lopez, H., Martinez, E., Machado, B.I., Hernandez, D.H., Martinez, L., Lopez, M.I., Wicker, R.B., and Bracke, J.: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Phil. Trans. R. Soc. A 368, 1999 (2010).Google Scholar
4. Zhu, C., Liu, T., Qian, F., Han, T.Y.J., Duoss, E.B., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., and Li, Y.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448 (2016).CrossRefGoogle ScholarPubMed
5. Xu, C., Gallant, B.M., Wunderlich, P.U., Lohmann, T., and Greer, J.R.: Three-dimensional Au microlattices as positive electrodes for Li-O2 batteries. ACS Nano 9, 5876 (2015).Google Scholar
6. Von Freymann, G., Ledermann, A., Thiel, M., Staude, I., Essig, S., Busch, K., and Wegener, M.: Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038 (2010).CrossRefGoogle Scholar
7. Christensen, J., Kadic, M., Wegener, M., Kraft, O., and Wegener, M.: Vibrant times for mechanical metamaterials. MRS Commun. 5, 453 (2015).Google Scholar
8. Gibson, L.J., and Ashby, M.F.: Cellular Solids Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 2001).Google Scholar
9. Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., and Carter, W.B.: Ultralight metallic microlattices. Science 334, 962 (2011).Google Scholar
10. Ashby, M.F.: Cellular solids – scaling of properties. In Cellular Ceramics: Structure, Manufacturing, Properties and Applications, edited by Scheffler, M., and Colombo, P. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005), pp. 3.Google Scholar
11. Montemayor, L.C., and Greer, J.R.: Mechanical response of hollow metallic nanolattices: combining structural and material size effects. J. Appl. Mech. 82, 071012 (2015).CrossRefGoogle Scholar
12. Bauer, J., Schroer, A., Schwaiger, R., and Kraft, O.: Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438 (2016).Google Scholar
13. George, T., Deshpande, V.S., and Wadley, H.N.G.: Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Compos. Part A, Appl. Sci. Manuf. 47, 31 (2013).Google Scholar
14. Dong, L., Deshpande, V., and Wadley, H.: Mechanical response of Ti-6Al-4 V octet-truss lattice structures. Int. J. Solids Struct. 60, 107 (2015).Google Scholar
15. Fleck, N.A., Deshpande, V.S., and Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 2496 (2010).Google Scholar
16. Deshpande, V.S., Ashby, M.F., and Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035 (2001).CrossRefGoogle Scholar
17. Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., and Greer, J.R.: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. USA 112, 11502 (2015).Google Scholar
18. Valdevit, L., and Bauer, J.: Fabrication of 3D micro-architected/nano-architected materials. In Three-Dimensional Microfabrication Using Two-photon Polymerization, edited by Baldacchini, Tommaso (Elsevier Inc., Amsterdam, 2016), pp. 345.CrossRefGoogle Scholar
19. Cheung, K.C., and Gershenfeld, N.: Reversibly assembled cellular composite materials. Science 341, 1219 (2013).CrossRefGoogle ScholarPubMed
20. Zhu, T., Li, J., Ogata, S., and Yip, S.: Mechanics of ultra-strength materials. MRS Bull. 34, 167 (2009).Google Scholar
21. Compton, B.G., and Lewis, J.A.: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930 (2014).CrossRefGoogle ScholarPubMed
22. Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., a Jackson, J., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373 (2014).CrossRefGoogle ScholarPubMed
23. Farahani, R.D., Chizari, K., and Therriault, D.: Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 6, 10470 (2014).Google Scholar
24. Montemayor, L., Chernow, V., and Greer, Julia J.R.: Materials by design: using architecture in material design to reach new property spaces. MRS Bull. 40, 1122 (2015).Google Scholar
25. Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., and Wegener, M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710 (2012).Google Scholar
26. Brenne, F., Niendorf, T., and Maier, H.J.: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 213, 1558 (2013).CrossRefGoogle Scholar
27. Montemayor, L.C., Meza, L.R., and Greer, J.R.: Design and fabrication of hollow rigid nanolattices via two-photon lithography. Adv. Eng. Mater. 16, 184 (2014).Google Scholar
28. Meza, L.R., Das, S., and Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322 (2014).Google Scholar
29. Naghieh, S., Karamooz Ravari, M.R., Badrossamay, M., Foroozmehr, E., and Kadkhodaei, M.: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 59, 241 (2016).CrossRefGoogle ScholarPubMed
30. Farahani, R.D., Lebel, L.L., and Therriault, D.: Laboratory Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet-assisted three-dimensional printing. J. Micromech. Microeng. 24, 055020 (2014).Google Scholar
31. Ashby, M.F.: The properties of foams and lattices. Philos. Trans. A, Math. Phys. Eng. Sci. 364, 15 (2006).Google Scholar
32. Bauer, J., Hengsbachb, S., Tesaria, I., Schwaigera, R., and Kraft, O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 2453 (2014).Google Scholar
33. Zhu, C., Han, T.Y.-J., Duoss, E.B., Golobic, A.M., Kuntz, J.D., Spadaccini, C.M., and Worsley, M.A.: Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).CrossRefGoogle ScholarPubMed
34. Lin, D., Jin, S., Zhang, F., Wang, C., Wang, Y., Zhou, C., and Cheng, G.J.: 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26, 434003 (2015).Google Scholar
35. Raney, J.R., and Lewis, J.A.: Printing mesoscale architectures. MRS Bull. 40, 943 (2015).Google Scholar
36. Serra, T., Planell, J.A., and Navarro, M.: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521 (2013).Google Scholar
37. Szczurek, A., Ortona, A., Ferrari, L., Rezaei, E., Medjahdi, G., Fierro, V., Bychanok, D., Kuzhir, P., and Celzard, A.: Carbon periodic cellular architectures. Carbon 88, 70 (2015).CrossRefGoogle Scholar
38. Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., Christ, H.J., and Wu, L.: Advanced micro-lattice materials. Adv. Eng. Mater. 17, 1253 (2015).Google Scholar
39. Kruth, J.P.P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., Rombouts, M., Van Vaerenbergh, J., Froyen, L., Rombouts, M., Van Vaerenbergh, J., Froyen, L., and Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 26 (2005).Google Scholar
40. Jacobsen, A.J., Barvosa-Carter, W., and Nutt, S.: Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv. Mater. 19, 3892 (2007).Google Scholar
41. Torrents, A., Schaedler, T.A., Jacobsen, A.J., Carter, W.B., and Valdevit, L.: Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 60, 511 (2012).CrossRefGoogle Scholar
42. Lausic, A.T., Bird, A.G., Steeves, C.A., and Hibbard, G.D.: Scale-dependent failure of stereolithographic polymer microtrusses in three-point bending. J. Compos. Mater. 50, 1739 (2015).Google Scholar
43. Bauer, J., Schroer, A., Schwaiger, R., Tesari, I., Lange, C., Valdevit, L., and Kraft, O.: Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105 (2015).Google Scholar
44. Yang, Z., Yan, C., Liu, J., Chabi, S., Xia, Y., and Zhu, Y.: Designing 3D graphene networks via a 3D-printed Ni template. RSC Adv. 5, 29397 (2015).Google Scholar
45. Taneva, E., Kusnoto, B., and Evans, C.A.: 3D scanning, imaging and printing in orthodontics. In Issues in Contemporary Orthodontics, edited by Bourzgui, Farid (INTECH, Rijeka, Croatia, 2015), pp.148.Google Scholar
46. Clausen, A., Wang, F., Jensen, J.S., Sigmund, O., and Lewis, J.A.: Topology optimized architectures with programmable Poisson's Ratio over large Deformations. Adv. Mater. 27, 5523 (2015).Google Scholar
47. Yang, Z., Chabi, S., Xia, Y., and Zhu, Y.: Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progr. Nat. Sci. Mater. Int. 25, 554 (2015).Google Scholar
48. Kim, J.T., Seol, S.K., Pyo, J., Lee, J.S., Je, J.H., and Margaritondo, G.: Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. Adv. Mater. 23, 1968 (2011).Google Scholar
49. Seol, S.K., Chang, W.S., Kim, D., and Jung, S.: Carbon nanotube-conducting polymer composite wires formed by fountain pen growth (FPG) route. RSC Adv. 2, 8926 (2012).Google Scholar
50. Kim, J.H., Chang, W.S., Kim, D., Yang, J.R., Han, J.T., Lee, G.W., Kim, J.T., and Seol, S.K.: 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27, 157 (2015).Google Scholar
51. Karamooz Ravari, M.R., Kadkhodaei, M., Badrossamay, M., and Rezaei, R.: Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 88, 154 (2014).Google Scholar
52. Ober, T.J., Foresti, D., and Lewis, J.A.: Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. USA 112, 12293 (2015).CrossRefGoogle ScholarPubMed
53. Wang, K., Chang, Y.-H., Chen, Y., Zhang, C., and Wang, B.: Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Des. 67, 159 (2015).Google Scholar
54. Gao, H., Ji, B., Jäger, I.L., Arzt, E., and Fratzl, P.: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597 (2013).CrossRefGoogle Scholar
55. Ma, Y., and Chen, Y.: Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2, 40 (2015).Google Scholar
56. Román-Manso, B., Figueiredo, F.M., Achiaga, B., Barea, R., Pérez-Coll, D., Morelos-Gómez, A., Terrones, M., Osendi, I., Belmonte, M., and Miranzo, P.: Electrically functional 3D-architectured graphene/SiC composites. Carbon 100, 318 (2016).CrossRefGoogle Scholar
57. Dong, L., Deshpande, V., and Wadley, H.: Mechanical properties of carbon fiber composite octet-truss lattice structures. Compos. Sci. Technol. 119, 26 (2015).Google Scholar
58. Liu, J., Qiao, W., Liu, J., Xie, D., Zhou, Z., Wu, L., and Ma, L.: High temperature indentation behaviors of carbon fiber composite pyramidal truss structures. Compos. Struct. 131, 266 (2015).Google Scholar
59. Mark, A.G., Palagi, S., Qiu, T., and Fischer, P.: Auxetic metamaterial simplifies soft robot design (IEEE Int. Conf. Robotics and Automation Proc., Sweden, 2016), p. 4951.Google Scholar
60. Roper, C.S., Schubert, R.C., Maloney, K.J., Page, D., Ro, C.J., Yang, S.S., and Jacobsen, A.J.: Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs. Adv. Mater. 27, 2479 (2015).Google Scholar
61. Mozdzen, L.C., Rodgers, R., Banks, J.M., Bailey, R.C., and Harley, B.A.C.: Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater. 33, 25 (2016).Google Scholar