Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T12:49:09.291Z Has data issue: false hasContentIssue false

Theoretical study of cubic-Li7La3Zr2O12(001)/LiCoO2(10–14) interface

Published online by Cambridge University Press:  09 March 2018

Sara Panahian Jand
Affiliation:
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Payam Kaghazchi*
Affiliation:
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
*
Address all correspondence to Payam Kaghazchi at [email protected]
Get access

Abstract

In this work, using density functional theory we study electronic and atomic structure as well as redistribution of ions at the interface between cubic-Li7La3Zr2O12 (LLZO) (001) and LiCoO2 (LCO) (10–14). It is found that a large lattice-mismatch-induced compressive strain of ~12% at the interface leads to disordering of LLZO (001). However, even a large tensile strain of ~13.5% does not influence ordering of LCO (10–14). Li ions tend to move from the surface of LCO and bulk LLZO to occupy the interstitial sites at the topmost layers of the LLZO slab. Li ion transfer from LCO to LLZO accompanies with electron transfer from the former to the latter and the formation of gap states.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Masquelier, C.: Solid electrolytes: lithium ions on the fast track. Nat. Mater. 10, 649 (2011).CrossRefGoogle ScholarPubMed
2.Tarascon, J-M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359367 (2001).CrossRefGoogle ScholarPubMed
3.Hassoun, J. and Scrosati, B.: Moving to a solid–state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv. Mater. 22, 51985201 (2010).Google Scholar
4.Zhong, H., Wang, C., Xu, Z., Ding, F., and Liu, X.: A novel quasi–solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium–sulfur batteries. Sci. Rep. 6, 25484 (2016).Google Scholar
5.Thangadurai, V., Kaack, H., and Weppner, W.: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437440 (2003).Google Scholar
6.Thangadurai, V. and Weppner, W.: Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107112 (2005).Google Scholar
7.Thangadurai, V. and Weppner, W.: Li6ALa2Nb2O12 (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure. J. Am. Ceram. Soc. 88, 411418 (2005).CrossRefGoogle Scholar
8.Murugan, R., Thangadurai, V., and Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 46, 77787781 (2007).Google Scholar
9.Awaka, J., Takashima, A., Kataoka, K., Kijima, N., Idemoto, Y., and Akimoto, J.: Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 40, 6062 (2010).CrossRefGoogle Scholar
10.Shimonishi, Y., Toda, A., Zhang, T., Hirano, A., Imanishi, N., Yamamoto, O., and Takeda, Y.: Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions. Solid State Ion. 183, 4853 (2011).Google Scholar
11.Murugan, R., Ramakumar, S., and Janani, N.: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Commun. 13, 13731375 (2011).Google Scholar
12.Wang, Y. and Lai, W.: High ionic conductivity lithium garnet oxides of Li7−xLa3Zr2−xTaxO12 compositions. Electrochem. Solid-State Lett. 15, A68A71 (2012).Google Scholar
13.Zhu, Y., He, X., and Mo, Y.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 2368523693 (2015).CrossRefGoogle ScholarPubMed
14.Zhu, Y., He, X., and Mo, Y.: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 32533266 (2016).Google Scholar
15.Thompson, T., Yu, S., Williams, L., Schmidt, R.D., Garcia-Mendez, R., Wolfenstine, J., Allen, J.L., Kioupakis, E., Siegel, D.J., and Sakamoto, J.: Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett. 2, 462468 (2017).Google Scholar
16.Koksbang, R., Barker, J., Shi, H., and Saidi, M.Y.: Cathode materials for lithium rocking chair batteries. Solid State Ion. 84, 121 (1996).Google Scholar
17.Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B.: LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Solid State Ion. 3, 171174 (1981).Google Scholar
18.Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B.: LixCoO2 (0 < x<−1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783789 (1980).CrossRefGoogle Scholar
19.Ohzuku, T. and Ueda, A.: Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion. 69, 201211 (1994).Google Scholar
20.Du Pasquier, A., Plitz, I., Menocal, S., and Amatucci, G.: A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115, 171178 (2003).Google Scholar
21.Ren, Y., Liu, T., Shen, Y., Lin, Y., and Nan, C-W.: Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J. Materiomics 2, 256264 (2016).Google Scholar
22.Takada, K., Ohta, N., Zhang, L., Fukuda, K., Sakaguchi, I., Ma, R., Osada, M., and Sasaki, T.: Interfacial modification for high-power solid-state lithium batteries. Solid State Ion. 179, 13331337 (2008).Google Scholar
23.Kim, K.H., Iriyama, Y., Yamamoto, K., Kumazaki, S., Asaka, T., Tanabe, K., Fisher, C.A.J., Hirayama, T., Murugan, R., and Ogumi, Z.: Characterization of the interface between LixCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764767 (2011).CrossRefGoogle Scholar
24.Park, K., Yu, B-C., Jung, J-W., Li, Y., Zhou, W., Gao, H., Son, S., and Goodenough, J.B.: Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chem. Mater. 28, 80518059 (2016).Google Scholar
25.Sumita, M., Tanaka, Y., Ikeda, M., and Ohno, T.: Theoretically designed Li3PO4(100)/LiFePO4(010) coherent electrolyte/cathode interface for all solid-state Li ion secondary batteries. J. Phys. Chem. C 119, 1422 (2014).Google Scholar
26.Sumita, M., Tanaka, Y., Ikeda, M., and Ohno, T.: Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C 120, 1333213339 (2016).Google Scholar
27.Haruyama, J., Sodeyama, K., Han, L., Takada, K., and Tateyama, Y.: Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 42484255 (2014).Google Scholar
28.Lippert, G., Hutter, J., and Parrinello, M.: A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477488 (1997).CrossRefGoogle Scholar
29.Lippert, G., Hutter, J., and Parrinello, M.: The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc. (Theoret. Chim. Acta) 103, 124140 (1999).Google Scholar
30.VandeVondele, J., and Hutter, J.: An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, 43654369 (2003).Google Scholar
31.VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J.: Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103128 (2005).Google Scholar
32.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
33.Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505 (1998).Google Scholar
34.Ghosh, P., Mahanty, S., Raja, M.W., Basu, R.N., and Maiti, H.S.: Structure and optical absorption of combustion-synthesized nanocrystalline LiCoO2. J. Mater. Res. 22, 11621167 (2007).Google Scholar
35.Kushida, K. and Kuriyama, K.: Narrowing of the co-3d band related to the order–disorder phase transition in LiCoO2. Solid State Commun.. 123, 349352 (2002).Google Scholar
36.Rosolen, J.M. and Decker, F.: Photoelectrochemical behavior of LiCoO2 membrane electrode. J. Electroanal. Chem. 501, 253259 (2001).Google Scholar
37.Van Elp, J., Wieland, J.L., Eskes, H., Kuiper, P., Sawatzky, G.A., De Groot, F.M.F., and Turner, T.S.: Electronic structure of coo, Li-doped coo, and LiCoO2. Phys. Rev. B 44, 6090 (1991).Google Scholar
38.Miara, L.J., Ong, S.P., Mo, Y., Richards, W.D., Park, Y., Lee, J-M., Lee, H.S., and Ceder, G.: Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation. Chem. Mater. 25, 30483055 (2013).Google Scholar
39.Santosh, K.C., Longo, R.C., Xiong, K., and Cho, K.: Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. Solid State Ion. 261, 100105 (2014).Google Scholar
40.Jalem, R., Yamamoto, Y., Shiiba, H., Nakayama, M., Munakata, H., Kasuga, T., and Kanamura, K.: Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425430 (2013).Google Scholar
41.Miara, L.J., Richards, W.D., Wang, Y.E., and Ceder, G.: First-principles studies on cation dopants and electrolyte-cathode interphases for lithium garnets. Chem. Mater. 27, 40404047 (2015).Google Scholar
42.Meier, K., Laino, T., and Curioni, A.: Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. J. Phys. Chem. C 118, 66686679 (2014).Google Scholar
43.Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).Google Scholar
44.Ensling, D., Thissen, A., Laubach, S., Schmidt, P.C., and Jaegermann, W.: Electronic structure of LiCoO2 thin films: a combined photoemission spectroscopy and density functional theory study. Phys. Rev. B 82, 195431 (2010).Google Scholar
45.Rodrigues, I., Wontcheu, J., and MacNeil, D.D.: Post-synthetic treatments on NixMnxCo1−2x(OH)2 for the preparation of lithium metal oxides. Mater. Res. Bull. 46, 18781886 (2011).CrossRefGoogle Scholar
46.Panahian Jand, S. and Kaghazchi, P.: The role of electrostatic effects in determining the structure of LiF-graphene interfaces. J. Phys.: Condens. Matter 26, 262001 (2014).Google Scholar
47.Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., Zhou, H., and Honma, I.: Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 74447452 (2007).Google Scholar
48.Kramer, D. and Ceder, G.: Tailoring the morphology of LiCoO2: a first principles study. Chem. Mater. 21, 37993809 (2009).Google Scholar
Supplementary material: File

Panahian Jand and Kaghazchi supplementary material

Panahian Jand and Kaghazchi supplementary material 1

Download Panahian Jand and Kaghazchi supplementary material(File)
File 15.9 KB