Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T10:45:23.111Z Has data issue: false hasContentIssue false

TaWSi amorphous metal thin films: composition tuning to improve thermal stability

Published online by Cambridge University Press:  04 September 2017

John M. McGlone*
Affiliation:
Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331-5501, USA
Kristopher R. Olsen
Affiliation:
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
William F. Stickle
Affiliation:
Hewlett-Packard Company, Corvallis, Oregon 97333, USA
James E. Abbott
Affiliation:
3D NanoColor, 1110 NE Circle Blvd, Corvallis, Oregon 97330, USA
Roberto A. Pugliese
Affiliation:
Hewlett-Packard Company, Corvallis, Oregon 97333, USA
Greg S. Long
Affiliation:
Hewlett-Packard Company, Corvallis, Oregon 97333, USA
Douglas A. Keszler
Affiliation:
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
John F. Wager
Affiliation:
Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331-5501, USA
*
Address all correspondence to John M. McGlone at [email protected] and [email protected]
Get access

Abstract

We deposited TaWSi amorphous metal thin films to determine how composition affects film crystallization and oxidation at high temperatures. Films were deposited by magnetron sputtering from targets of nominal compositions Ta : W : Si = 40 : 40 : 20, 30 : 50 : 20, and 30 : 30 : 40, and studied by electron probe microanalysis, electron microscopy, electrical methods, x-ray diffraction, x-ray photoelectron spectroscopy, and atomic-force microscopy. All films remained amorphous to 800 °C or higher temperatures. Films prepared from the target composition 30 : 30 : 40 yielded the film composition Ta41.7W38.4Si19.9, which retained its film integrity and amorphous structure to 1100 °C, even after annealing in air.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors share first authorship.

References

1.Allen, R.R., Meyer, J.D., and Knight, W.R.: Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard J. 36, 21 (1985).Google Scholar
2.Fonseca, M.A., English, J.M., von Arx, M., and Allen, M.G.: Wireless micromachined ceramic pressure sensor for high-temperature applications. J. Microelectromech. Syst. 11, 337 (2002). DOI: 10.1109/JMEMS.2002.800939.Google Scholar
3.Goward, G.: Progress in coatings for gas turbine airfoils. Surf. Coat. Technol. 108–109, 73 (1998). DOI: 10.1016/S0257-8972(98)00667-7.Google Scholar
4.Farcy, A., Carpentier, J.F., Thomas, M., Torres, J., and Ancey, P.: Integration of high-performance RF passive modules (MIM capacitors and inductors) in advanced BEOL. Microelectron. Eng. 85, 1940 (2008). DOI: 10.1016/j.mee.2008.03.017.Google Scholar
5.Wolf, S. and Tauber, R.N.: Silicon Processing for the VLSI Era, 2nd ed. (Lattice Press, Sunset Beach, CA, USA, 2000), vol. 1.Google Scholar
6.Chu, J.P., Jang, J.S.C., Juang, J.C., Chou, H.S., Yang, Y., Yi, J.C., Wang, Y.C., Lee, J.W., Liu, F.X., Liaw, P.K., Chen, Y.C., Lee, C.M., Li, C.L., and Rullyani, C.: Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520, 5097 (2007). DOI: 10.1016/j.tsf.2012.03.092.Google Scholar
7.Kumar, G., Desai, A., and Schroers, J.: Bulk metallic glass: the smaller the better. Adv. Mater. 23, 461 (2011). DOI: 10.1002/adma.201002148.Google Scholar
8.Zhang, X.Q., Ma, E., and Xu, J., Mechanically alloyed multi-component Mo-based amorphous metals. J. Non-Cryst. Solids 352, 3985 (2006). DOI: 10.1016/j.jnoncrysol.2006.07.041.Google Scholar
9.Suryanarayana, C. and Inoue, A.: Bulk Metallic Glasses (CRC Press Taylor and Francis Group, Boca Raton, FL, USA, 2011).Google Scholar
10.Takeuchi, A. and Inoue, A.: Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 1372 (2000). DOI: 10.2320/matertrans1989.41.1372.Google Scholar
11.Grubbs, M.E., Zhang, X., Deal, M., Nishi, Y., and Clemens, B.M., Development and characterization of high temperature stable Ta–W–Si–C amorphous metal gates. Appl. Phys. Lett. 97, 223505 (2010). DOI: 10.1063/1.3508952.Google Scholar
12.Ouyang, J., Wongpiya, R., Grubbs, M.E., Deal, M.D., Clemens, B.M., and Nishi, Y.: Effect of composition on structural and electrical properties of amorphous Ta–W–Si–C metal thin films. ECS Solid State Lett. 2, 86 (2013). DOI: 10.1149/2.003310ssl.Google Scholar
13.Yoshitake, T., Kubo, Y., and Igarashi, H., Preparation of refractory transition metal-metalloid amorphous alloys and their thermal stability. Mater. Sci. Eng. 97, 269 (1988). DOI: 10.1016/0025-5416(88)90055-9.Google Scholar
14.McGlone, J.M., Olsen, K.R., Stickle, W.F., Abbott, J.E., Pugliese, R.A., Long, G.S., Keszler, D.A., and Wager, J.F.: Ta-based amorphous metal thin films. J. Alloys Compd. 650, 102 (2015). DOI: 10.1016/j.jallcom.2015.07.226.Google Scholar
15.Stickle, W.F.: The use of chemometrics in AES and XPS data treatment in surface analysis. In Auger and X-Ray Photoelectron Spectroscopy, edited by Briggs, D. and Grant, J. (IM Publications, Chichister, West Sussex, UK, 2003), pp. 377398.Google Scholar
16.Tanaka, K., Nawata, K., Inui, H., Yamaguchi, M., and Koiwa, M.: Refinement of crystallographic parameters in refractory metal disilicides. Mat. Res. Soc. Symp. Proc. 646, N4-3 (2000). DOI: 10.1557/PROC-646-N4.3.1.Google Scholar
17.Schauer, A. and Roschy, M.: R.F. sputtered β-tantalum and B.C.C. tantalum films. Thin Solid Films 12, 313 (1972). DOI: 10.1016/0040-6090(72)90095-8.Google Scholar
18.Bouziane, K., Mamor, M., and Meyer, F.: DC magnetron sputtered tungsten: W film properties and electrical properties of W/Si Schottky diodes. Appl. Phys. A 81, 209 (2005). DOI: 10.1007/s00339-004-2558-5.Google Scholar
19.Chapman, B.: Glow Discharge Processes (John Wiley and Sons Inc, New York, 1980).Google Scholar
20.Betz, G. and Wehner, G.K.: Sputtering of multicomponent materials in sputtering. In Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neuron Sputtering, Surface Topography, edited by Behrisch, R. (Springer-Verlag, Berlin, 1983), pp. 4248.Google Scholar
21.Shaginyan, L.R., Misina, M., Kadlec, S., and Jasterbi, L.: Mechanisms of the film composition formation during magnetron sputtering of W Ti. J. Vac. Sci. Technol. A 19, 2554 (2001). DOI: 10.1116/1.1392401.Google Scholar
22.Murakami, Y. and Shingyoji, T.: Compositional difference between films and targets in sputtering of refractory metal silicides. J. Vac. Sci. Technol. A 8, 851 (1990). DOI: 10.1116/1.576929.Google Scholar
23.Chandrasekharan, R., Park, I., Masel, R.I., and Shannon, M.A.: Thermal oxidation of tantalum films at various oxidation states from 300 to 700 °C. J. Appl. Phys. 98, 114908 (2005). DOI: 10.1063/1.2139834.Google Scholar
Supplementary material: File

McGlone et al supplementary material

McGlone et al supplementary material 1

Download McGlone et al supplementary material(File)
File 4.6 MB