Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T10:48:57.489Z Has data issue: false hasContentIssue false

Synthesis of nanoparticles in carbon arc: measurements and modeling

Published online by Cambridge University Press:  09 May 2018

Shurik Yatom*
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
Alexander Khrabry
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
James Mitrani
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
Andrei Khodak
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
Igor Kaganovich
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
Vladislav Vekselman
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
Brent Stratton
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
Yevgeny Raitses
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, NJ 08540, USA
*
Address all correspondence to Shurik Yatom at [email protected]
Get access

Abstract

This work presents a study of the region of nanoparticle growth in an atmospheric pressure carbon arc. The nanoparticles are detected using the planar laser-induced incandescence technique. The measurements revealed large clouds of nanoparticles in the arc periphery bordering the region with a high density of diatomic carbon molecules. Two-dimensional computational fluid dynamic simulations of the arc combined with thermodynamic modeling show that this is due to the interplay of the condensation of carbon molecular species and the convection flow pattern. These results show that the nanoparticles are formed in the colder, peripheral regions of the arc and describe the parameters necessary for coagulation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

References

1.Ariyarathna, I.R., Rajakaruna, R.M.P.I., and Nedra Karunaratne, D.: The rise of inorganic nanomaterial implementation in food applications. Food Control 77, 251259 (2017).Google Scholar
2.Dastjerd, R. and Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79, 518 (2010).Google Scholar
3.Chu, H., Wei, L., Cui, R., Wang, J., and Li, Y.: Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 11171134 (2010).Google Scholar
4.Lohse, S.E. and Murphy, C.J.: Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 1560715620 (2012).Google Scholar
5.Kim, T. and Hyeon, T.: Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25, 012001012015 (2014).Google Scholar
6.Lo Porto, C., Palumbo, F., Palazzoa, G., and Favia, P.: Direct plasma synthesis of nano-capsules loaded with antibiotics. Polym. Chem. 8, 17461749 (2017).Google Scholar
7.Heyse, P., Van Hoeck, A., Roeffaers, M.B.J., Raffin, J.P., Steinbuchel, A., Stoveken, T., Lammertyn, J., Verboven, P., Jacobs, P.A., Hofkens, J., Paulussen, S., and Sels, B.F.: Exploration of atmospheric pressure plasma nanofilm technology for straightforward bio-active coating deposition: enzymes, plasmas and polymers, an elegant synergy. Plasma Process. Polym. 8, 965974 (2011).Google Scholar
8.Koga, K., Dong, X., Iwashita, S., Czarnetzki, U., and Shiratani, M.: Formation of carbon nanoparticle using Ar + CH4 high pressure nanosecond discharges. J. Phys Conf. Ser. 518, 012020012026 (2014).Google Scholar
9.Kortshagen, U., Mohan Sankaran, R., Pereira, R., Girshick, S., Wu, J., and Aydil, E.: Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem. Rev. 116, 1106111127 (2016).Google Scholar
10.Rai, A., Park, K., Zhou, L., and Zachariah, M.R.: Understanding the mechanism of aluminum nanoparticle oxidation. Combust. Theor. Model. 10, 843859 (2006).Google Scholar
11.Park, K., Lee, D., Rai, A., Mukherjee, D., and Zachariah, M.R.: Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 72907299 (2005).Google Scholar
12.Arora, N. and Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135150 (2014).Google Scholar
13.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).Google Scholar
14.Ando, Y. and Zhao, X.: Synthesis of carbon nanotubes by arc-discharge method. New Diam. Front. Carbon Technol. 16, 123137 (2006).Google Scholar
15.Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603606 (1993).Google Scholar
16.Bethune, D., Kiang, C., De Vries, M., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605607 (1993).Google Scholar
17.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Leek, R., and Fischerk, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756759 (1997).Google Scholar
18.Fang, X., Shashurin, A., Teel, G., and Keidar, M.: Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon N. Y. 107, 273280 (2016).Google Scholar
19.Ng, J. and Raitses, Y.: Self-organizational processes in the carbon arc for nanosynthesis. J. Appl. Phys. 117, 063303063307 (2015).Google Scholar
20.Shashurin, A. and Keidar, M.: Synthesis of 2D materials in arc plasmas. J. Phys. D, Appl. Phys. 48, 314007314016 (2015).Google Scholar
21.Ng, J. and Raitses, Y.: Role of the cathode deposit in the carbon arc for the synthesis of nanomaterials. Carbon N. Y. 77, 8089 (2014).Google Scholar
22.Gökce, B., Amendola, V., and Barcikowski, S.: Opportunities and challenges for laser synthesis of colloids. Chem. Phys. Chem. 18, 983985 (2017).Google Scholar
23.Hu, S., Melton, C., and Mukherjee, D.: A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Phys. Chem. Chem. Phys. 16, 2403424044 (2014).Google Scholar
24.Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 4749 (2005).Google Scholar
25.Peña-Álvarez, M., del Corro, E., Langua, F., Baonza, V.G., and Taravillo, M.: Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Adv. 6, 4954349550 (2016).Google Scholar
26.Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanostructures, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 24772512 (2004).Google Scholar
27.Saito, Y., Okuda, M., and Koyama, T.: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863867 (1996).Google Scholar
28.Williams, K., Tachibana, M., Allen, J., Grigorian, L., Cheng, S., Fang, S., Sumanasekera, G.U., Loper, A.L., Williams, J.H., and Eklund, P.C.: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 3137 (1999).Google Scholar
29.Farhat, S., Lamy de La Chapelle, M., Loiseau, A., Scott, C.D., Lefrant, S., Journet, C., and Bernier, P.: Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 115, 67526759 (2001).Google Scholar
30.Grebenyukov, V.V., Obraztsova, E.D., Pozharov, A.S., Arutyunyan, N.R., Romeikov, A.A., and Kozyrev, I.A.: Arc-synthesis of single-walled carbon nanotubes in nitrogen atmosphere. Fullerenes Nanotubes Carbon Nanostruct. 16, 330334 (2008).Google Scholar
31.Das, R., Shahnavaz, Z., Eaqub Ali, Md, Moinul Islam, M., and Bee Abd Hamid, S.: Can we optimize arc discharge and laserablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510533 (2016).Google Scholar
32.Yatom, S., Bak, J., Khrabryi, A., and Raitses, Y.: Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. Carbon N. Y. 117, 154162 (2017).Google Scholar
33.Gerakis, A., Yeh, Y.W., Shneider, M.N., Mitrani, J.M., Stratton, B.C., and Raitses, Y.: Four-wave-mixing approach to in situ detection of nanoparticles. Phys. Rev. Appl. 9, 014031014039 (2018).Google Scholar
34.Vekselman, V., Feurer, M., Huang, T., Stratton, B., and Raitses, Y.: Complex structure of the carbon arc discharge for synthesis of nanotubes. Plasma Sources Sci. Technol. 26, 065019065030 (2017).Google Scholar
35.Vekselman, V., Khrabry, A., Kaganovich, I., Stratton, B., Selinsky, R.S., and Raitses, Y.: Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc. Plasma Sources Sci. Technol. 27, 025008025021 (2018).Google Scholar
36.Michelsen, H.A., Schulz, C., Smallwood, G.J., and Will, S.: Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 248 (2015).Google Scholar
37.Stoffels, W.W., Stoffels, E., Kroesen, G.M.W., and de Hoog, F.J.: Detection of dust particles in the plasma by laser-induced heating. J. Vac. Sci. Technol. A 14, 588594 (1996).Google Scholar
38.Eom, G.S., Park, C.W., Shin, Y.H., Chung, K.H., Park, S., Choe, W., and Hahn, J.W.: Size determination of nanoparticles in low-pressure plasma with laser-induced incandescence technique. Appl. Phys. Lett. 83, 12611263 (2003).Google Scholar
39.van de Wetering, F.M.J.H., Oosterbeek, W., Beckers, J., Nijdam, S., Kovačević, E., and Berndt, J.: Laser-induced incandescence applied to dusty plasmas. J. Phys. D, Appl. Phys. 49, 295206295216 (2016).Google Scholar
40.Menser, J., Daun, K., Dreier, T., and Schulz, C.: Laser-induced incandescence from laser-heated silicon nanoparticles. Appl. Phys. B 122, 277293 (2016).Google Scholar
41.Shneider, M.N.: Carbon nanoparticles in the radiation field of the stationary arc discharge. Phys. Plasmas 22, 073303073307 (2015).Google Scholar
42.Mitrani, J.M., Shneider, M.N., Stratton, B.C., and Raitses, Y.: Modeling thermionic emission from laser-heated nanoparticles. Appl. Phys. Lett. 108, 054101054105 (2016).Google Scholar
43.Gershman, S. and Raitses, Y.: Unstable behavior of anodic arc discharge for synthesis of nanomaterials. J. Phys. D, Appl. Phys. 49, 3452013452010 (2016).Google Scholar
44.Khrabry, A., Kaganovich, I.D., Khodak, A., and Nemchinsky, V.: Self-consistent two-dimensional nonequilibrium numerical simulations of carbon arc discharge, in preparation as of February 2018.Google Scholar
45.Khrabry, A., Kaganovich, I., Nemchinsky, V., and Khodak, A.: Investigation of the short argon arc with hot anode. I. numerical simulations of non-equilibrium effects in the near-electrode regions. Phys. Plasmas 25, 013521013537 (2018).Google Scholar
46.Almeida, N.A., Benilov, M.S., and Naidis, G.V.: Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J. Phys. D, Appl. Phys. 41, 245201245227 (2008).Google Scholar
47.Khrabry, A., Kaganovich, I., Nemchinsky, V., and Khodak, A.: Investigation of the short argon arc with hot anode. II. Analytical model. Phys. Plasmas 25, 013522013542 (2018).Google Scholar
48.Wang, W.Z., Rong, M.Z., Murphy, A.B., Wu, Y., Spencer, J.W., Yan, J.D., and Fang, M.T.C.: Thermophysical properties of carbon-argon and carbon-helium plasmas. J. Phys. D, Appl. Phys. 44, 295202295212 (2011).Google Scholar
49.Pierson, H.O.: Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes Publications, Park Ridge, NJ, 1993), ISBN: 0-8155-1339-9.Google Scholar
50.Fetterman, A.J., Raitses, Y., and Keidar, M.: Enhanced ablation of small anodes in a carbon nanotube arc plasma. Carbon N. Y. 46, 13221326 (2008).Google Scholar
51.Smirnov, B.M.. Cluster Processes in Gases and Plasmas (Wiley-VCH Verlag GmbH), Weinheim, Germany, 2010, 442 pages.Google Scholar
52.Davari, S.A. and Mukherjee, D.: Kinetic Monte Carlo simulation for homogeneous nucleation of metal nanoparticles during vapor phase synthesis. AIChE J. 64, 1828 (2017).Google Scholar
53.Kappler, P., Ehrburger, P., Lahaye, J., and Donnet, J.-B.: Fine carbon particle formation by carbon-vapor condensation. J. Appl. Phys. 50, 308318 (1979).Google Scholar
Supplementary material: File

Yatom et al. supplementary material

Yatom et al. supplementary material 1

Download Yatom et al. supplementary material(File)
File 91.5 KB