Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T02:09:58.007Z Has data issue: false hasContentIssue false

Surface analyses of amorphous aluminum oxides with AlO6 clusters

Published online by Cambridge University Press:  10 November 2020

Mikio Fukuhara*
Affiliation:
New Industry Creation Hatchery Centre, Tohoku University, Aoba, Sendai980-8579, Japan
Tomoyuki Kuroda
Affiliation:
New Industry Creation Hatchery Centre, Tohoku University, Aoba, Sendai980-8579, Japan
Fumihiko Hasegawa
Affiliation:
New Industry Creation Hatchery Centre, Tohoku University, Aoba, Sendai980-8579, Japan
Toshiyuki Hashida
Affiliation:
Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Sendai980-8579, Japan
Hotaka Yagyu
Affiliation:
National Institute of Technology, Sendai College, Natori981-1239, Japan
Kazuya Konno
Affiliation:
National Institute of Technology, Sendai College, Natori981-1239, Japan
Masahiko Nishijima
Affiliation:
The Electron Microscopy Center, Tohoku University, Aoba, Sendai980-8577, Japan
Eunsang Kwon
Affiliation:
Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai980-8578, Japan
*
Address all correspondence to Mikio Fukuhara at [email protected]
Get access

Abstract

An amorphous aluminum oxide supercapacitor can store a large amount of electric storge on the uneven surfaces with AlO6 clusters. The amount of stored electricity increases with decreasing convex diameter d and depth of valley h. The nondestructive detection of AlO6 clusters on a surface with (Al0.91Y0.09)O1.66 oxide layer at a depth of 0.5 μm was determined based on a 3505 cm1 peak band in the Fourier transform-infrared (FT-IR) spectrum and one 1047 cm−1 peak in the microRaman spectrum. The discharging time (T) could be expressed as T = 1.388 × 100.019 I. Thus, we can evaluate the amount of electricity by the nondestructive detection methods such as FT-IR and the microRaman spectra.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aricó, A.S., Bruce, P., Scrosativ, B., Tarascon, J.M., and Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).CrossRefGoogle ScholarPubMed
Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).CrossRefGoogle ScholarPubMed
El-Kady, M.F., Strong, V., Dubin, S., and Kaner, R.B.: Laser scribing of high performance and flexible graphene-based electrochemical capacitors. Science 335, 1326 (2012).CrossRefGoogle ScholarPubMed
Fukuhara, M., Yoshida, H., Sato, M., Sugawara, K., Takeuchi, T., Seki, I., and Sueyoshi, T.: Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons. Phys. Stat. Sol. RRL 7, 477 (2013).CrossRefGoogle Scholar
Fukuhara, M. and Sugawara, K.: Electric charging/discharging characteristics of supercapacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons. Nanoscale Res. Lett. 9, 253 (2014).CrossRefGoogle Scholar
Fukuhara, M., Kuroda, T., Hasegawa, F., Hashida, T., Kwon, E., and Konno, K.: Amorphous aluminumoxide supercapacitors. Europhys. Lett. 123, 58004 (2018).CrossRefGoogle Scholar
Fukuhara, M., Kuroda, T., and Hasegawa, F.: Amorphous titanium-oxide supercapacitors. Sci. Rep. 6, 35870 (2016).CrossRefGoogle ScholarPubMed
Fukuhara, M., Kuroda, T., Hasegawa, F., Shirai, Y., Hashida, T., and Konno, K.: Anodic oxidization of Al-Y amorphous alloy ribbons and their capacitive properties. J. Alloy Compd. 776, 757762 (2019).CrossRefGoogle Scholar
Yadav, A.K. and Singh, P.: A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 83, 67583 (2015).CrossRefGoogle Scholar
Fukuhara, M., Kuroda, T., Hasegawa, F., Takahashi, M., Suwa, T., Hashida, T., Sato, K., Nishijima, M., and Konno, K.: Effects of temperatures and carbon dioxide nanotubes on superior electric storage for anodically oxidized films of AlY10 amorphous alloy. AIP Adv. 9, 095202 (2019).CrossRefGoogle Scholar
James, P.F.: Liquid-phase separation in glass-forming systems. J. Mater. Sci. 10, 1802 (1975).CrossRefGoogle Scholar
Fukuhara, M., Kuroda, T., Hasegawa, F., Shirai, Y., Suwa, T., Hashida, T., and Nishijima, M.: Amorphous titanium-oxide supercapacitors with high capacitance. Europhys. Lett. 128, 58001 (2019).CrossRefGoogle Scholar
Fukuhara, M., Fukuhara, M., Kuroda, T., Hasegawa, F., Hashida, T., Takeda, M., Konno, K., and Fujima, N.: AlO6 clusters' electric storage effect in amorphous alumina supercapacitors. Sci. Rep. (under review).Google Scholar
Takeuchi, M. and Anpo, M.: The evaluation of adsorption states of H2O molecules on oxide surfaces by vibrational adsorption:-Near and middle infrared spectroscopy. Mater. Integ. 19, 35 (2006).Google Scholar
Mitin, A.V.: Accurate theoretical IR and Raman spectrum of Al2O2 and Al2O3 molecules. Struct. Chem. 22, 411 (2011).CrossRefGoogle Scholar
Parker, W.O. Jr., de Angelis, A., Flego, C., Millini, R., Perego, C., and Xanaqrdi, S.Z.: Unexpected destructive dealumination of zeolite beta by silylation. J. Phys. Chem., C 114, 8459 (2010).CrossRefGoogle Scholar
Iijima, T., Kato, S., Ikeda, R., Ohki, S., and Kido, G.: Structure of duplex oxide layer in porous alumina by 27Al MAS and MQMAS NMR. Chem. Lett. 34, 1286 (2005).CrossRefGoogle Scholar
Tuschel, D.: Stress, strain, and Raman spectroscopy. Spectroscopy 34, 1 (2019).Google Scholar
Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., and Silva, S.R.P.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80, 440 (1996).CrossRefGoogle Scholar