Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T07:32:01.117Z Has data issue: false hasContentIssue false

Structure of capillary suspensions and their versatile applications in the creation of smart materials

Published online by Cambridge University Press:  08 March 2018

Katharina Hauf
Affiliation:
Karlsruhe Institute for Technology, Institute for Mechanical Process Engineering and Mechanics, Karlsruhe, Germany
Erin Koos*
Affiliation:
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, Leuven 3001, Belgium Karlsruhe Institute for Technology, Institute for Mechanical Process Engineering and Mechanics, Karlsruhe, Germany
*
Address all correspondence to Erin Koos at [email protected]
Get access

Abstract

In this paper, we reviewed recent research in the field of capillary suspensions and highlight a variety of applications in the field of smart materials. Capillary suspensions are liquid–liquid–solid ternary systems where only one liquid is present in a few percent and induces a strong, capillary-induced particle network. These suspensions have a large potential for exploitation, particularly in the production of porous materials since the paste itself and the properties of the final material can be adapted. We also discussed the rheological properties of the suspension and network structure to highlight the various ways these systems can be tuned.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koos, E. and Willenbacher, N.: Capillary forces in suspension rheology. Science 331, 897900 (2011).CrossRefGoogle ScholarPubMed
2.Domenech, T. and Velankar, S.: Capillary-driven percolating networks in ternary blends of immiscible polymers and silica particles. Rheol. Acta 53, 593605 (2014).CrossRefGoogle Scholar
3.Yang, J. and Velankar, S.S.: Preparation and yielding behavior of pendular network suspensions. J. Rheol. (N. Y. N. Y). 61, 217228 (2017).Google Scholar
4.Xu, J., Chen, L., Choi, H., Konish, H., and Li, X.: Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci. Rep. 3, 1730 (2013).CrossRefGoogle Scholar
5.Dunstan, T.S., Das, A.A.K., Starck, P., Stoyanov, S.D., and Paunov, V.N.: Capillary structured suspensions from in situ hydrophobized calcium carbonate particles suspended in a polar liquid media. Langmuir 34, 442452 (2018).CrossRefGoogle Scholar
6.Domenech, T. and Velankar, S.S.: Microstructure, phase inversion and yielding in immiscible polymer blends with selectively wetting silica particles. J. Rheol. 61, 363377 (2017).CrossRefGoogle Scholar
7.Danov, K.D., Georgiev, M.T., Kralchevsky, P.A., Radulova, G.M., Gurkov, T.D., Stoyanov, S.D., and Pelan, E.G.: Hardening of particle/oil/water suspensions due to capillary bridges: experimental yield stress and theoretical interpretation. Adv. Colloid Interface Sci. 251, 8096 (2018).CrossRefGoogle ScholarPubMed
8.Hoffmann, S., Koos, E., and Willenbacher, N.: Using capillary bridges to tune stability and flow behavior of food suspensions. Food Hydrocoll. 40, 4452 (2014).Google Scholar
9.Wollgarten, S., Yuce, C., Koos, E., and Willenbacher, N.: Tailoring flow behavior and texture of water based cocoa suspensions. Food Hydrocoll. 52, 167174 (2016).CrossRefGoogle Scholar
10.Bitsch, B., Dittmann, J., Schmitt, M., Scharfer, P., Schabel, W., and Willenbacher, N.: A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties. J. Power Sources 265, 8190 (2014).CrossRefGoogle Scholar
11.Bitsch, B., Gallasch, T., Schroeder, M., Börner, M., Winter, M., and Willenbacher, N.: Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J. Power Sources 328, 114123 (2016).CrossRefGoogle Scholar
12.Schneider, M., Koos, E., and Willenbacher, N.: Highly conductive, printable pastes from capillary suspensions. Sci. Rep. 6, 31367 (2016).CrossRefGoogle ScholarPubMed
13.Schneider, M., Maurath, J., Fischer, S.B., Weiß, M., Willenbacher, N., and Koos, E.: Suppressing crack formation in particulate systems by utilizing capillary forces. ACS Appl. Mater. Interfaces 9, 1109511105 (2017).Google Scholar
14.Jampolski, L., Sänger, A., Jakobs, T., Guthausen, G., Kolb, T., and Willenbacher, N.: Improving the processability of coke water slurries for entrained flow gasification. Fuel 185, 102111 (2016).Google Scholar
15.Koos, E., Dittmann, J., and Willenbacher, N.: Kapillarkräfte in Suspensionen: Rheologische Eigenschaften und potenzielle Anwendungen. Chemie-Ingenieur-Technik 83, 13051309 (2011).CrossRefGoogle Scholar
16.Dittmann, J. and Willenbacher, N.: Micro structural investigations and mechanical properties of macro porous ceramic materials from capillary suspensions. J. Am. Ceram. Soc. 97, 37873792 (2014).Google Scholar
17.Dittmann, J., Maurath, J., Bitsch, B., and Willenbacher, N.: Highly porous materials with unique mechanical properties from smart capillary suspensions. Adv. Mater. 28, 16891696 (2016).Google Scholar
18.Koos, E. and Willenbacher, N.: Particle configurations and gelation in capillary suspensions. Soft Matter 8, 3988 (2012).CrossRefGoogle Scholar
19.Bossler, F. and Koos, E.: Structure of particle networks in capillary suspensions with wetting and nonwetting fluids. Langmuir 32, 14891501 (2016).CrossRefGoogle ScholarPubMed
20.Das, A.A.K., Dunstan, T.S., Stoyanov, S.D., Starck, P., and Paunov, V.N.: Thermally responsive capillary suspensions. ACS Appl. Mater. Interfaces 9, 4415244160 (2017).CrossRefGoogle ScholarPubMed
21.Domenech, T. and Velankar, S.S.: On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter 11, 15001516 (2015).CrossRefGoogle ScholarPubMed
22.Heidlebaugh, S.J., Domenech, T., Iasella, S.V., and Velankar, S.S.: Aggregation and separation in ternary particle/oil/water systems with fully wettable particles. Langmuir 30, 6374 (2014).CrossRefGoogle ScholarPubMed
23.Domenech, T., Yang, J., Heidlebaugh, S., and Velankar, S.S.: Three distinct open-pore morphologies from a single particle-filled polymer blend. Phys. Chem. Chem. Phys. 18, 43104315 (2016).Google Scholar
24.Yang, J., Roell, D., Echavarria, M., and Velankar, S.S.: A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles. Soft Matter 13, 85798589 (2017).Google Scholar
25.Hauf, K., Riazi, K., Willenbacher, N., and Koos, E.: Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low-temperature route to produce porous solid materials. Colloid Polym. Sci. 295, 17731785 (2017).CrossRefGoogle ScholarPubMed
26.Roh, S., Parekh, D.P., Bharti, B., Stoyanov, S.D., and Velev, O.D.: 3D Printing by multiphase silicone/water capillary inks. Adv. Mater. 29, 17 (2017).CrossRefGoogle ScholarPubMed
27.Dittmann, J., Koos, E., and Willenbacher, N.: Ceramic capillary suspensions: novel processing route for macroporous ceramic materials. J. Am. Ceram. Soc. 96, 391397 (2013).Google Scholar
28.Maurath, J., Dittmann, J., Schultz, N., and Willenbacher, N.: Fabrication of highly porous glass filters using capillary suspension processing. Sep. Purif. Technol. 149, 470478 (2015).CrossRefGoogle Scholar
29.Maurath, J. and Willenbacher, N.: 3D printing of open-porous cellular ceramics with high specific strength. J. Eur. Ceram. Soc. 37, 48334842 (2017).Google Scholar
30.Maurath, J., Bitsch, B., Schwegler, Y., and Willenbacher, N.: Influence of particle shape on the rheological behavior of three-phase non-Brownian suspensions. Colloids Surf. A Physicochem. Eng. Asp. 497, 316326 (2016).Google Scholar
31.Bossler, F., Weyrauch, L., Schmidt, R., and Koos, E.: Influence of mixing conditions on the rheological properties and structure of capillary suspensions. Colloids Surf. A Physicochem. Eng. Asp. 518, 8597 (2017).Google Scholar
32.Willet, C.D., Adams, M.J., Johnson, S.A., and Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16, 93969405 (2000).CrossRefGoogle Scholar
33.Pitois, O., Moucheront, P., and Chateau, X.: Rupture energy of a pendular liquid bridge. Eur. Phys. J. B 23, 7986 (2001).Google Scholar
34.Butt, H.J. and Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146, 4860 (2009).Google Scholar
35.Pietsch, W., and Rumpf, H.: Haftkraft, Kapillardruck. Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugel. Chem. Ing. Tech. 15, 885893 (1967).CrossRefGoogle Scholar
36.Koos, E., Johannsmeier, J., Schwebler, L., and Willenbacher, N.: Tuning suspension rheology using capillary forces. Soft Matter 8, 6620 (2012).Google Scholar
37.Flemmer, C.L.: On the regime boundaries of moisture in granular materials. Powder Technol. 66, 191194 (1991).Google Scholar
38.Bossler, F., Maurath, J., Dyhr, K., Willenbacher, N., and Koos, E.: Fractal approaches to characterize structure of capillary suspensions using rheology and confocal microscopy. J. Rheol. 62, 183 (2018).CrossRefGoogle ScholarPubMed
39.Piau, J.-M., Dorget, M., Palierne, J.-F., and Pouchelon, A.: Shear elasticity and yield stress of silica–silicone physical gels: fractal approach. J. Rheol. 43, 305314 (1999).Google Scholar
40.Wu, H. and Morbidelli, M.: Model relating structure of colloidal gels to their elastic properties. Langmuir 17, 10301036 (2001).CrossRefGoogle Scholar
41.Koos, E., Kannowade, W., and Willenbacher, N.: Restructuring and aging in a capillary suspension. Rheol. Acta 53, 947957 (2014).CrossRefGoogle Scholar
42.Velankar, S.S.: A non-equilibrium state diagram for liquid/fluid/particle mixtures. Soft Matter 11, 83938403 (2015).CrossRefGoogle ScholarPubMed
43.Zhang, Y., Allen, M.C., Zhao, R., Deheyn, D.D., Behrens, S.H., and Meredith, J.C.: Capillary foams: stabilization and functionalization of porous liquids and solids. Langmuir 31, 26692676 (2015).Google Scholar
44.Bharti, B., Fameau, A.-L., Rubinstein, M., and Velev, O.D.: Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. Nat. Mater. 14, 11041109 (2015).CrossRefGoogle ScholarPubMed