Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T07:40:30.505Z Has data issue: false hasContentIssue false

Strong exciton–photon coupling in anthradithiophene microcavities: from isolated molecules to aggregates

Published online by Cambridge University Press:  05 August 2019

J. D. B. Van Schenck
Affiliation:
Department of Physics, Oregon State University, Corvallis, OR 97331, USA
E. K. Tanyi
Affiliation:
Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
L.-J. Cheng
Affiliation:
Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
J. Anthony
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
O. Ostroverkhova*
Affiliation:
Department of Physics, Oregon State University, Corvallis, OR 97331, USA
*
Address all correspondence to O. Ostroverkhova at [email protected]
Get access

Abstract

The authors report on strong exciton–photon coupling in all-metal microcavities containing functionalized anthradithiophene (ADT) in host poly(methyl methacrylate) matrices for a wide range of ADT concentrations. Angle-resolved reflectance of polycrystalline films revealed Rabi splittings up to 340 meV. Angle-resolved photoluminescence in films with low ADT concentrations (dominated by “isolated” ADT molecules) showed Rabi splittings which scaled with the square root of oscillator strength. When “aggregated” and “isolated” ADT molecules coexisted in film, cavities preferentially coupled to “isolated” molecules due to an anisotropic distribution of aggregates. As a solution-processable high-performance organic semiconductor, ADT shows promise as an (opto)electronic polaritonic material.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ostroverkhova, O.: Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 116, 1327913412 (2016).Google Scholar
2.Holmes, R. and Forrest, S.: Strong exciton-photon coupling in organic materials. Org. Electron. 8, 7793 (2007).Google Scholar
3.Kuehne, A. and Gather, M.: Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 1282312864 (2016).Google Scholar
4.Sanvitto, D. and Kéna-Cohen, S.: The road towards polaritonic devices. Nat. Mater. 15, 10611073 (2016).Google Scholar
5.Orgiu, E., George, J., Hutchison, J., Devaux, E., Dayen, J., Doudin, B., Stellacci, F., Genet, C., Schachenmayer, J., Genes, C., Pupillo, G., Samori, P., and Ebbesen, T.W.: Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 11231130 (2015).Google Scholar
6.Eizner, E., Brodeur, J., Barachati, F., Sridharan, A., and Kena-Cohen, S.: Organic photodiodes with an extended responsivity using ultrastrong light-matter coupling. ACS Photonics 5, 29212927 (2018).Google Scholar
7.Hobson, P., Barnes, W., Lindzey, D., Gehring, G., Whittaker, D., Skolnick, M., and Walker, S.: Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Appl. Phys. Lett. 81, 3519 (2002).Google Scholar
8.Liu, B., Rai, P., Grezmak, J., Twieg, R., and Singer, K.: Coupling of exciton-polaritons in low-Q coupled microcavities beyond the rotating wave approximation. Phys. Rev. B 92, 155301 (2015).Google Scholar
9.Kena-Cohen, S., Maier, S., and Bradley, D.D.C.: Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827833 (2013).Google Scholar
10.Roux, F. and Bradley, D.D.C.: Conformational control of exciton-polariton physics in metal-poly (9,9-dioctylfluorene)-metal cavities. Phys. Rev. B 98, 195306 (2018).Google Scholar
11.Kena-Cohen, S. and Forrest, S.: Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. Phys. Rev. B 77, 073205 (2008).Google Scholar
12.Kéna-Cohen, S., Davanço, M., and Forrest, S.: Strong exciton–photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008).Google Scholar
13.Kena-Cohen, S. and Forrest, S.: Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4, 371375 (2010).Google Scholar
14.Paudel, K., Giesbers, G., Van Schenck, J., Anthony, J., and Ostroverkhova, O.: Molecular packing-dependent photoconductivity in functionalized anthradithiophene crystals. Org. Electron. 67, 311319 (2019).Google Scholar
15.Shepherd, W., Platt, A., Hofer, D., Ostroverkhova, O., Loth, M., and Anthony, J.: Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors. Appl. Phys. Lett. 97, 163303 (2010).Google Scholar
16.Shepherd, W., Platt, A., Kendrick, M., Loth, M., Anthony, J., and Ostroverkhova, O.: Energy transfer and exciplex formation and their impact on exciton and charge carrier dynamics in organic films. J. Phys. Chem. Lett. 2, 362366 (2011).Google Scholar
17.Jurchescu, O.D., Subramanian, S., Kline, R., Hudson, S., Anthony, J., Jackson, T., and Gundlach, D.: Organic single-crystal field-effect transistors of a soluble anthradithiophene. Chem. Mater. 20, 67336737 (2008).Google Scholar
18.Niazi, M., Li, R., Li, E.Q., Kirmani, A., Abdelsamie, M., Wang, Q., Pan, W., Payne, M., Anthony, J., Smilgies, D., Thoroddsen, S., Giannelis, E., and Amassian, A.: Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. Nat. Commun. 6, 8598 (2015).Google Scholar
19.Paudel, K., Johnson, B., Thieme, M., Haley, M., Payne, M., Anthony, J., and Ostroverkhova, O.: Enhanced charge photogeneration promoted by crystallinity in small-molecule donor-acceptor bulk heterojunctions. Appl. Phys. Lett. 105, 043301 (2014).Google Scholar
20.Ishimura, T., Amashita, K., Anagi, H., and Akayama, M.: Quantitative evaluation of light–matter interaction parameters in organic single-crystal microcavities. Opt. Lett. 43, 10471050 (2018).Google Scholar
21.Platt, A., Kendrick, M., Loth, M., Anthony, J., and Ostroverkhova, O.: Temperature dependence of exciton and charge carrier dynamics in organic thin films. Phys. Rev. B 84, 235209 (2011).Google Scholar
22.Van Schenck, J., Giesbers, G., Kannegula, A., Cheng, L., Anthony, J., and Ostroverkhova, O.: Molecular packing-dependent exciton and polariton dynamics in anthradithiophene organic crystals. MRS Adv. 3, 34653470 (2018).Google Scholar
23.Shepherd, W., Grollman, R., Robertson, A., Paudel, K., Hallani, R., Loth, M., Anthony, J., and Ostroverkhova, O.: Single-molecule imaging of organic semiconductors: toward nanoscale insights into photophysics and molecular packing. Chem. Phys. Lett. 629, 2935 (2015).Google Scholar
24.Savona, V., Andreani, L., Schwendimann, P., and Quattropani, A.: Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun. 93, 733739 (1995).Google Scholar
25.Fox, M.: Quantum Optics: An Introduction (Oxford University Press, New York City, 2006).Google Scholar
26.Suzuki, M., Sakata, T., Takenobu, R., Uemura, S., Miyagawa, H., Nakanishi, S., and Tsurumachi, N.: Dye concentration dependence of spectral triplet in one-dimensional photonic crystal with cyanine dye J-aggregate in strong coupling regime. Appl. Phys. Lett. 111, 163302 (2017).Google Scholar
27.Valmorra, F., Broll, M., Schwaiger, S., Welzel, N., Heitmann, D., and Mendach, S.: Strong coupling between surface plasmon polariton and laser dye rhodamine 800. Appl. Phys. Lett. 99, 051110 (2011).Google Scholar
28.Lee, W., Lim, J., Kwak, D., Cho, J., Lee, H., Choi, H., and Cho, K.: Semiconductor-dielectric blends: a facile all solution route to flexible all-organic transistors. Adv. Mater. 21, 42434248 (2009).Google Scholar
29.Ebbesen, T.W.: Hybrid light−matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403 (2016).Google Scholar
30.Herrera, F. and Spano, F.C.: Absorption and photoluminescence in organic cavity QED. Phys. Rev. A 95, 053867 (2017).Google Scholar
Supplementary material: File

Van Schenck et al. supplementary material

Van Schenck et al. supplementary material 1

Download Van Schenck et al. supplementary material(File)
File 893.2 KB