Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T05:27:43.077Z Has data issue: false hasContentIssue false

Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers

Published online by Cambridge University Press:  30 April 2020

Y. Liu
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
P. Zhou
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
J. Fu
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA College of Electronics and Information, Hangzhou Dianzi University, Hangzhou310018, People's Republic of China
M. Iyengar
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA
N. Liu
Affiliation:
Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
P. Du
Affiliation:
Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
Y. Xiong
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL60439, USA
V. Moiseienko
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA
W. Zhang
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA
J. Zhang
Affiliation:
College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou450002, People's Republic of China
Z. Ma
Affiliation:
Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
Y. Qi
Affiliation:
Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
V. Novosad
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL60439, USA
T. Zhou
Affiliation:
College of Electronics and Information, Hangzhou Dianzi University, Hangzhou310018, People's Republic of China
D. Filippov
Affiliation:
Novgorod State University, Veliky Novgorod, Russia
T. Zhang*
Affiliation:
Department of Materials Science and Engineering, Hubei University, Wuhan430062, People's Republic of China
M. E. Page
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433, USA
G. Srinivasan*
Affiliation:
Department of Physics, Oakland University, Rochester, MI48309, USA
*
Address all correspondence to T. Zhang at [email protected] and G. Srinivasan at [email protected]
Address all correspondence to T. Zhang at [email protected] and G. Srinivasan at [email protected]
Get access

Abstract

This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nan, C.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 9 (1994).CrossRefGoogle ScholarPubMed
Ryu, J., Priya, S., Uchino, K., and Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Elec. 8, 2 (2002).Google Scholar
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 7104 (2006).CrossRefGoogle ScholarPubMed
Ramesh, R. and Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).CrossRefGoogle ScholarPubMed
Nan, C., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 3 (2008).CrossRefGoogle Scholar
Zhai, J., Xing, Z., Dong, S., Li, J., and Viehland, D.: Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91, 2 (2008).CrossRefGoogle Scholar
Priya, S., Islam, R., Dong, S., and Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Elec. 19, 1 (2007).Google Scholar
Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153178 (2010).CrossRefGoogle Scholar
Cui, J., Hockel, J.L., Nordeen, P.K., Pisani, D.M., Liang, C., Carman, G.P., and Lyncha, C.S.: A method to control magnetism in individual strain-mediated magnetoelectric islands. Appl. Phys. Lett. 103, 23 (2013).Google Scholar
Srinivasan, G., Priya, S., and Sun, N.X.: Composite Magnetoelectrics: Materials, Structures, and Applications, 1st edition (Woodhead Publishing, New York, NY, 2015).Google Scholar
Corral-Flores, V., Bueno-Baques, D., Carrillo-Flores, D., and Matutes-Aquino, J.A.: Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99, 8 (2006).CrossRefGoogle Scholar
Devan, R.S. and Chougule, B.K.: Effect of composition on coupled electric, magnetic, and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. 101, 1 (2007).CrossRefGoogle Scholar
Yang, H., Zhang, G., Lin, Y., Ye, T., and Kang, P.: Electrical, magnetic and magnetoelectric properties of BaTiO3/BiY2Fe5O12 particulate composites. Ceram. Int. 41, 5 (2015).Google Scholar
Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 22 (1995).CrossRefGoogle ScholarPubMed
Liu, L.P. and Kuo, H.Y.: Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications. Int. J. Solids Struct. 49, 22 (2012).CrossRefGoogle Scholar
Kuo, H.Y. and Wang, Y.L.: Optimization of magnetoelectricity in multiferroic fibrous composites. Mech. Mater. 50, 8899 (2012).CrossRefGoogle Scholar
Hu, J., Li, Z., Wang, J., and Nan, C.W.: Electric-field control of strain-mediated magnetoelectric random access memory. J. Appl. Phys. 107, 9 (2010).CrossRefGoogle Scholar
Sun, N.X. and Srinivasan, G.: Voltage control of magnetism in multiferroic heterostructures and devices. In Special Issue on Recent Progress in Spintronic Devices, Vol. 2, edited by Yiming Huai, Pedram Khalili Amiri, and Kang L. Wang (World Scientific Publishing Company, 2012) p. 1240004.Google Scholar
Vopson, M.M.: Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223250 (2015).CrossRefGoogle Scholar
Leung, C.M., Li, J.F., Viehland, D., and Zhuang, X.: A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D: Appl. Phys. 51, 263002 (2018).CrossRefGoogle Scholar
Viehland, D., Wuttig, M., McCord, J., and Quandt, E.: Magnetoelectric magnetic field sensors. MRS Bull. 43, 834840 (2018).CrossRefGoogle Scholar
Petrov, V.M., Zhang, J., Qu, H., Zhou, P., Zhang, T., and Srinivasan, G.: Theory of magnetoelectric effects in multiferroic core-shell nanofibers of hexagonal ferrites and ferroelectrics. J. Phys. D: Appl. Phys. 51, 28 (2018).CrossRefGoogle Scholar
Vaz, C., Hoffman, J., Ahn, C.H., and Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 29002918 (2010).CrossRefGoogle ScholarPubMed
Viehland, D., Li, J.F., Yang, Y., Costanzo, T., Yourdkhani, A., Caruntu, G., Zhou, P., Zhang, T., Li, T., Gupta, A., Popov, M., and Srinivasan, G.: Tutorial: product properties in multiferroic nanocomposites. J. Appl. Phys. 124, 061101 (2018).CrossRefGoogle Scholar
Chen, X.Z., Hoop, M., Shamsudhin, N., Huang, T., Özkale, B., Li, Q., Siringil, E., Mushtaq, F., Di Tizio, L., Nelson, B.J., and Pané, S.: Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29, 8 (2017).Google ScholarPubMed
Xie, S., Ma, F., Liu, Y., and Li, J.: Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3, 8 (2011).CrossRefGoogle Scholar
Zhu, Q., Xie, Y., Zhang, J., Liu, Y., Zhan, Q., Miao, H., and Xie, S.: Multiferroic CoFe2O4-BiFeO3 core-shell nanofibers and their nanoscale magnetoelectric coupling. J. Mater. Res. 29, 5 (2014).CrossRefGoogle Scholar
Sreenivasulu, G., Popov, M., Zhang, R., Sharma, K., Janes, C., Mukundan, A., and Srinivasan, G.: Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions. Appl. Phys. Lett. 104, 5 (2014).CrossRefGoogle Scholar
Sreenivasulu, G., Zhang, J., Zhang, R., Popov, M., Petrov, V., and Srinivasan, G.: Multiferroic core-shell nanofibers, assembly in a magnetic field, and studies on magneto-electric interactions. Materials 11, 1 (2018).Google Scholar
Caruntu, G., Yourdkhani, A., Vopsaroiu, M., and Srinivasan, G.: Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 4, 32183227 (2012).CrossRefGoogle ScholarPubMed
Liu, Y., Zhang, J., Zhou, P., Dong, C., Liang, X., Zhang, W., Zhang, T., Sun, N.X., Filippov, D., and Srinivasan, G.: Magneto-electric interactions in composites of self-biased Y-and W-type hexagonal ferrites and lead zirconate titanate: experiment and theory. J. Appl. Phys. 126, 114102 (2019).CrossRefGoogle Scholar
Li, J.H., Levin, I., Slutsker, J., Provenzano, V., Schenck, P.K., Ramesh, R., Ouyang, J., and Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).CrossRefGoogle Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661663 (2004).CrossRefGoogle ScholarPubMed
Gao, X.S., Rodriguez, B.J., Liu, L., Birajdar, B., Pantel, D., Ziese, M., Alexe, M., and Hesse, D.: Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4, 1099 (2010).CrossRefGoogle Scholar
Vrejoiu, I., Morelli, A., Biggemann, D., and Pippel, E.: Ordered arrays of multiferroic epitaxial nanostructures. Nano Rev. 2, 7364 (2011).CrossRefGoogle ScholarPubMed
Yang, Y., Priya, S., Li, J., and Viehland, D.: Two-phase coexistence in single-grain BaTiO3-(Mn0.5Zn0.5)Fe2O4 composites, via solid-state reaction. J. Am. Ceram. Soc. 92, 1552 (2009).CrossRefGoogle Scholar
Bai, F., Zhang, H., Li, J., and Viehland, D.: Magnetic and magnetoelectric properties of as-deposited and annealed BaTiO3-CoFe2O4 nanocomposite thin films. J. Phys. D: Appl. Phys. 43, 285002 (2010).CrossRefGoogle Scholar
Li, L., Lu, L., Zhang, D., Su, R., Yang, G., Zhai, J., and Yang, Y.: Direct observation of magnetic field induced ferroelectric domain evolution in self-assembled Quasi (0-3) BiFeO3–CoFe2O4 thin films. ACS Appl. Mater. Interfaces 8, 442 (2015).CrossRefGoogle ScholarPubMed
Caruntu, G., Ypurdkhani, A., Vopsaroiu, M., and Srinivasan, G.: Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse microscopy. Nanoscale 4, 3218 (2012).CrossRefGoogle ScholarPubMed
Hua, Z.H., Yang, P., Huang, H.B., Wan, J.G., Yu, Z.Z., Yang, S.G., Lu, M., Gu, B.X., and Du, Y.W.: Sol-gel template synthesis and characterization of magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes. Mater. Chem. Phys. 107, 541546 (2008).CrossRefGoogle Scholar
Liu, M., Li, X., Imrane, H., Chen, Y.J., Goodrich, T., Cai, Z.H., Ziemer, K.S., Huang, J.Y., and Sun, N.X.: Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007).CrossRefGoogle Scholar
Pullar, R.C.: Hexagonal ferrite fibres and nanofibres. Solid State Phenom. 241, 168 (2016).CrossRefGoogle Scholar
Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 11911334 (2012).CrossRefGoogle Scholar
Pullar, R.C., Taylor, M.D., and Bhattacharya, A.K.: A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres. J. Eur. Ceram. Soc. 22, 12 (2002).CrossRefGoogle Scholar
Sun, R., Li, X., Xia, A., Su, S., and Jin, C.: Hexagonal SrFe12O19 ferrite with high saturation magnetization. Ceram. Int. 44, 12 (2018).CrossRefGoogle Scholar
Yuh, J., Nino, J.C., and Sigmund, W.M.: Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater. Lett. 59, 28 (2005).CrossRefGoogle Scholar
Wei, Y., Song, Y., Deng, X., Han, B., Zhang, X., Shen, Y., and Lin, Y.: Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Tech. 30, 8 (2014).CrossRefGoogle Scholar
Miao, Z., Chen, L., Zhou, F., and Wang, Q.: Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies. J. Phys. D: Appl. Phys. 51, 2 (2017).Google Scholar
Tang, H., Zhou, Z., and Sodano, H.A.: Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl. Mater. Interfaces 6, 54505455 (2014).CrossRefGoogle ScholarPubMed
Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.Q., Schlom, D.G., and Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 10051009 (2004).CrossRefGoogle ScholarPubMed
Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., and Wang, Y.: Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 165631 (2015).CrossRefGoogle Scholar
Chen, X., Xu, S., Yao, N., Xu, W., and Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009).CrossRefGoogle Scholar
Cho, K.H. and Priya, S.: Synthesis of ferroelectric PZT fibers using sol–gel technique. Mater. Lett. 65, 4 (2011).CrossRefGoogle Scholar
Lee, H.N., Nakhmanson, S.M., Chisholm, M.F., Christen, H.M., Rabe, K.M., and Vanderbilt, D.: Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys. Rev. Lett. 98, 21 (2007).Google ScholarPubMed
Fan, M., Hui, W., Li, Z., Shen, Z., Li, H., Jiang, A., and Chen, Y.: Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3,Ti0.7)O3 nanofibers. Microelectron. Eng. 98, 371 (1998).CrossRefGoogle Scholar
Malakooti, M.H., Zhou, Z., and Sodano, H.A.: Enhanced energy harvesting through nanowire based functionally graded interfaces. Nano Energy 52, 171182 (2018).CrossRefGoogle Scholar
Pullar, R.C., Taylor, M.D., and Bhattacharya, A.K.: Halide removal from BaM (BaFe12O19) and SrM (SrFe12O19) ferrite fibers via a steaming process. J. Mater. Res. 16, 31623169 (2001).CrossRefGoogle Scholar
Pullar, R.C., Bdikin, I.K., and Bhattacharya, A.K.: Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. J. Eur. Ceram. Soc. 32, 905913 (2012).CrossRefGoogle Scholar
Liu, M.Q., Shen, X.Q., Meng, X.F., Song, F.Z., and Xiang, J.: Fabrication and magnetic property of M-type strontium ferrite nanofibers by electrospinning. J. Inorg. Mater. 25, 6872 (2010).CrossRefGoogle Scholar
Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R.: Fabrication and characterization of PZT thin-film vibrators for micromotors. Sens. Actuat. A: Phys. 48, 157165 (1995).CrossRefGoogle Scholar
Kajiyoshi, K., Ishizawa, N., and Yoshimura, M.: Preparation of tetragonal barium titanate thin film on titanium metal substrate by hydrothermal method. J. Am. Ceram. Soc. 74, 369374 (1991).CrossRefGoogle Scholar
Kim, J., Yang, S.A., Choi, Y.C., Han, J.K., Jeong, K.O., Yun, Y.J., Kim, D.J., Yang, S.M., Yoon, D., Cheong, H., Chang, K.S., Noh, T.W., and Bu, S.D.: Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallites. Nano Lett. 8, 18131818 (2008).CrossRefGoogle ScholarPubMed
Liu, S., Yan, S., Luo, H., Huang, S., Liao, C., and Deng, L.: Magnetic effects on polarization response in particulate magnetoelectric Bi0.5Na0.5TiO3-La0.67Sr0.33MnO3 composites. Mater. Lett. 212, 139 (2018).CrossRefGoogle Scholar
Lawes, G. and Srinivasan, G.: Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D: Appl. Phys. 44, 243001 (2011).CrossRefGoogle Scholar
Yang, S.C., Park, C.S., Cho, K.H., and Priya, S.: Self-biased magnetoelectric response in three-phase laminates. J. Appl. Phys. 108, 093706 (2010).CrossRefGoogle Scholar
Zhou, Y., Maurya, D., Yan, Y., Srinivasan, G., Quandt, E., and Priya, S.: Self-biased magnetoelectric composites: an overview and future perspectives. Energy Harvesting Syst. 3, 42 (2016).Google Scholar
Mathe, V.L., Srinivasan, G., and Balbashov, A.M.: Magnetoelectric effects in bilayers of lead zirconate titanate and single crystal hexaferrites. Appl. Phys. Lett. 92, 122505 (2008).CrossRefGoogle Scholar