Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:24:10.770Z Has data issue: false hasContentIssue false

Strain-induced phase transformation and piezoresistivity in VO2 nanowires

Published online by Cambridge University Press:  05 April 2012

A. Sedlmayr
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
R. Mönig*
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
S.T. Boles
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
G. Kilibarda
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
O. Kraft
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
*
Address all correspondence to R. Mönig at[email protected]
Get access

Abstract

We report on the mechanical and electrical response of VO2 nanowires during the application of uniaxial tensile strain at room temperature. Stress–strain curves exhibit plateaus, which are characteristic of reversible transformations. The mechanical data are also discussed in terms of size effects, which is important for applications where the structural integrity is key to the performance of devices. Electrical measurements during straining show a distinct increase in resistivity at the M1–M2 transition, and a strong piezo-resistive effect for the M2 phase, disclosing new opportunities for future nanostructured devices. To our knowledge, this is the first time that piezoresistivity in the M2 phase has been reported.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Newns, D.M., Misewich, J.A., Tsuei, C.C., Gupta, A., Scott, B.A., and Schrott, A.: Mott transition field effect transistor. Appl. Phys. Lett. 73, 780 (1998).CrossRefGoogle Scholar
2.Babulanam, S.M., Eriksson, T.S., Niklasson, G.A., and Granqvist, C.G.: Thermochromic VO2 films for energy-efficient windows. Sol. Energy Mater. 16, 347 (1987).CrossRefGoogle Scholar
3.Granqvist, C.G.: Window coatings for the future. Thin Solid Films. 193, 730 (1990).Google Scholar
4.Strelcov, E., Lilach, Y., and Kolmakov, A.: Gas sensor based on metal–insulator transition in VO(2) nanowire thermistor. Nano Lett. 9, 2322 (2009).CrossRefGoogle ScholarPubMed
5.Berglund, C.N. and Guggenheim, H.J.: Electronic properties of VO2 near semiconductor–metal transition. Phys. Rev. 185, 1022 (1969).Google Scholar
6.Brückner, W., Oppermann, H., Reichelt, W., Terukow, J.I., Tschudnowski, F.A., and Wolf, E.: Vanadiumdioxide (Akademie-Verlag, Berlin, 1983).Google Scholar
7.Morin, F.J.: Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
8.Eyert, V.: The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys.-Berlin. 11, 650 (2002).CrossRefGoogle Scholar
9.Marezio, M., Mcwhan, B., Remeika, J.P., and Dernier, P.D.: Structural aspects of metal–insulator transitions in Cr-doped VO2. Phys. Rev. B 5, 2541 (1972).CrossRefGoogle Scholar
10.Pouget, J.P. and Launois, H.: Metal–insulator phase transition in VO2. J. Phys. IV. 37, C4 (1976).Google Scholar
11.Pouget, J.P., Launois, H., Dhaenens, J.P., Merenda, P., and Rice, T.M.: Electron localization induced by uniaxial stress in pure VO2. Phys. Rev. Lett. 35, 873 (1975).CrossRefGoogle Scholar
12.Cao, J., Ertekin, E., Srinivasan, V., Fan, W., Huang, S., Zheng, H., Yim, J.W.L., Khanal, D.R., Ogletree, D.F., Grossmanan, J.C., and Wu, J.: Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 4, 732 (2009).CrossRefGoogle ScholarPubMed
13.Cao, J., Gu, Y., Fan, W., Chen, L.Q., Ogletree, D.F., Chen, K., Tamura, N., Kunz, M., Barrett, C., Seidel, J., and Wu, J.: Extended mapping and exploration of the vanadium dioxide stress–temperature phase diagram. Nano Lett. 10, 2667 (2010).CrossRefGoogle ScholarPubMed
14.Guo, H., Chen, K., Oh, Y., Wang, K., Dejoie, C., Asif, S.A.S., Warren, O.L., Shan, Z.W., Wu, J., and Minor, A.M.: Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO(2) nanowires. Nano Lett. 11, 3207 (2011).CrossRefGoogle Scholar
15.Richter, G., Hillerich, K., Gianola, D.S., Monig, R., Kraft, O., and Volkert, C.A.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).CrossRefGoogle ScholarPubMed
16.Jones, A.C., Berweger, S., Wei, J., Cobden, D., and Raschke, M.B.: Nano-optical investigations of the metal–insulator phase behavior of individual VO2 microcrystals. Nano Lett. 10, 1574 (2010).CrossRefGoogle Scholar
17.Sohn, J.I., Joo, H.J., Ahn, D., Lee, H.H., Porter, A.E., Kim, K., Kang, D.J., and Welland, M.E.: Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 9, 3392 (2009).CrossRefGoogle ScholarPubMed
18.Zhang, S.X., Chou, J.Y., and Lauhon, L.J.: Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam. Nano Lett. 9, 4527 (2009).CrossRefGoogle Scholar
19.Wei, J., Wang, Z.H., Chen, W., and Cobden, D.H.: New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. 4, 420 (2009).CrossRefGoogle ScholarPubMed
20.Cheng, Y., Wong, T.L., Ho, K.M., and Wang, N.: The structure and growth mechanism of VO2 nanowires. J. Cryst. Growth. 311, 1571 (2009).CrossRefGoogle Scholar
21.Kim, M.H., Lee, B., Lee, S., Larson, C., Baik, J.M., Yavuz, C.T., Seifert, S., Vajda, S., Winans, R.E., Moskovits, M., Stucky, G.D., and Wodtke, A.M.: Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9, 4138 (2009).CrossRefGoogle ScholarPubMed
22.Gianola, D.S., Sedlmayr, A., Monig, R., Volkert, C.A., Major, R.C., Cyrankowski, E., Asif, S.A.S., Warren, O.L., and Kraft, O.: In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev. Sci. Instrum. 82, 063901 (2011).CrossRefGoogle ScholarPubMed
23.Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids. 42, 1223 (1994).CrossRefGoogle Scholar
24.Fan, W., Huang, S., Cao, J., Ertekin, E., Barrett, C., Khanal, D.R., Grossman, J.C., and Wu, J.: Superelastic metal–insulator phase transition in single-crystal VO2 nanobeams. Phys. Rev. B 80, 241105 (2009).Google Scholar
25.Andreev, V.N., Chudnovskii, F.A., Petrov, A.V., and Terukov, E.I.: Thermal-conductivity of VO2,V3O5, and V2O3. Phys. Status Solidi A 48, K153 (1978).CrossRefGoogle Scholar
Supplementary material: File

Sedlmayr Supplementary Material

Supplementary Material.doc

Download Sedlmayr Supplementary Material(File)
File 664.1 KB