Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T07:39:09.049Z Has data issue: false hasContentIssue false

Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics

Published online by Cambridge University Press:  27 July 2012

R.K. Vasudevan*
Affiliation:
School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
S. Jesse
Affiliation:
Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TENNESSEE 37831
Y. Kim
Affiliation:
Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TENNESSEE 37831
A. Kumar
Affiliation:
Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TENNESSEE 37831
S.V. Kalinin*
Affiliation:
Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TENNESSEE 37831
*
*Address all correspondence to R.K. Vasudevan and S.V. Kalinin at [email protected] and [email protected]
*Address all correspondence to R.K. Vasudevan and S.V. Kalinin at [email protected] and [email protected]
Get access

Abstract

Piezoresponse force microscopy (PFM) has emerged as a powerful tool to characterize piezoelectric, ferroelectric, and multiferroic materials on the nanometer level. Much of the driving force for the broad adoption of PFM has been the intense research into piezoelectric properties of thin films, nanoparticles, and nanowires of materials as dissimilar as perovskites, nitrides, and polymers. Recent recognition of limitations of single-frequency PFM, notably topography-related cross-talk, has led to development of novel solutions such band-excitation (BE) methods. In parallel, the need for quantitative probing of polarization dynamics has led to emergence of complex time- and voltage spectroscopies, often based on acquisition and analysis of multidimensional datasets. In this perspective, we discuss the recent developments in multidimensional PFM, and offer several examples of spectroscopic techniques that provide new insight into polarization dynamics in ferroelectrics and multiferroics. We further discuss potential extension of PFM for probing ionic phenomena in energy generation and storage materials and devices.

Type
Prospectives Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J.F. and Paz de Araujo, C.A.: Ferroelectric memories. Science 246, 1400 (1989).CrossRefGoogle ScholarPubMed
2.Zheng, Y., Ni, G.-X., Toh, C.-T., Zeng, M.-G., Chen, S.-T., Yao, K., and Ozyilmaz, B.: Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).Google Scholar
3.Fu, W., Xu, Z., Bai, X., Gu, C., and Wang, E.: Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9, 921 (2009).CrossRefGoogle ScholarPubMed
4.Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J.: Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238 (1997).Google Scholar
5.Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421 (2009).Google Scholar
6.Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthelemy, A., and Bibes, M.: Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81 (2009).CrossRefGoogle ScholarPubMed
7.Polla, D.L.: Microelectromechanical systems based on ferroelectric thin films. Microelectron. Eng. 29, 51 (1995).Google Scholar
8.Karami, M.A. and Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012).Google Scholar
9.Gael, S., Sebastien, P., and Daniel, G.: Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 17, 015012 (2008).Google Scholar
10.Bernstein, J.J., Finberg, S.L., Houston, K., Niles, L.C., Chen, H.D., Cross, L.E., Li, K.K., and Udayakumar, K.: Micromachined high frequency ferroelectric sonar transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 960 (1997).Google Scholar
11.Foster, F.S., Harasiewicz, K.A., and Sherar, M.D.: A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1363 (2000).Google Scholar
12.Pramanick, A., Damjanovic, D., Daniels, J.E., Nino, J.C., and Jones, J.L.: Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94, 293 (2011).Google Scholar
13.Sluka, T., Tagantsev, A.K., Damjanovic, D., Gureev, M., and Setter, N.: Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Comm. 3, 748 (2012).Google Scholar
14.Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D., and Damjanovic, D.: Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 49 (2007).Google Scholar
15.Xu, F., Trolier-McKinstry, S., Ren, W., Xu, B., Xie, Z.L., and Hemker, K.J.: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336 (2001).Google Scholar
16.Pertsev, N.A. and Emelyanov, A.Y.: Domain-wall contribution to the piezoelectric response of epitaxial ferroelectric thin films. Appl. Phys. Lett. 71, 3646 (1997).Google Scholar
17.Avrami, M.: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
18.Ishibashi, Y. and Takagi, Y.: Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31, 506 (1971).CrossRefGoogle Scholar
19.So, Y.W., Kim, D.J., Noh, T.W., Yoon, J.-G., and Song, T.K.: Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005).CrossRefGoogle Scholar
20.Tagantsev, A.K., Stolichnov, I., Setter, N., Cross, J.S., and Tsukada, M.: Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).CrossRefGoogle Scholar
21.Wu, A., Vilarinho, P.M., Wu, D., and Gruverman, A.: Abnormal domain switching in Pb(Zr,Ti)O3 thin film capacitors. Appl. Phys. Lett. 93, 262906 (2008).Google Scholar
22.Yang, T.J., Gopalan, V., Swart, P.J., and Mohideen, U.: Direct observation of pinning and bowing of a single ferroelectric domain wall. Phys. Rev. Lett. 82, 4106 (1999).Google Scholar
23.Agronin, A., Rosenwaks, Y., and Rosenman, G.: Direct observation of pinning centers in ferroelectrics. Appl. Phys. Lett. 88, 072911 (2006).CrossRefGoogle Scholar
24.Nambu, S. and Sagala, D.A.: Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838 (1994).Google Scholar
25.Rayleigh, L.: XXV. Notes on electricity and magnetism – III. On the behaviour of iron and steel under the operation of feeble magnetic forces. Philos. Mag. Ser. 5 23, 225 (1887).Google Scholar
26.Tybell, T., Paruch, P., Giamarchi, T., and Triscone, J.-M.: Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 89, 097601 (2002).Google Scholar
27.Paruch, P., Giamarchi, T., and Triscone, J.M.: Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005).Google Scholar
28.Kim, D.J., Jo, J.Y., Kim, T.H., Yang, S.M., Chen, B., Kim, Y.S., and Noh, T.W.: Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).Google Scholar
29.Giamarchi, T., Kolton, A.B., and Rosso, A.: Dynamics of disordered elastic systems, In Jamming, Yielding, and Irreversible Deformation in Condensed Matter, edited by Miguel, M.C. and Rubí, J.M. (Springer Verlag, Berlin and Heidelberg, Germany, 2006), pp. 91108.Google Scholar
30.Keys, A.S., Abate, A.R., Glotzer, S.C., and Durian, D.J.: Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3, 260 (2007).CrossRefGoogle Scholar
31.Guillon, O., Thiebaud, F., and Perreux, D.: Tensile fracture of soft and hard PZT. Int. J. Fract. 117, 235 (2002).CrossRefGoogle Scholar
32.Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).Google Scholar
33.Gruverman, A., Auciello, O., and Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101 (1998).Google Scholar
34.Kalinin, S.V., Morozovska, A.N., Chen, L.-Q., and Rodriguez, B.J.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).CrossRefGoogle Scholar
35.Abplanalp, M., Eng, L.M., and Günter, P.: Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A Mater. Sci. Process. 66, S231 (1998).CrossRefGoogle Scholar
36.Gruverman, A., Wu, D., Fan, H.J., Vrejoiu, I., Alexe, M., Harrison, R.J., and Scott, J.F.: Vortex ferroelectric domains. J. Phys.: Condens. Matter 20, 342201 (2008).Google Scholar
37.Ganpule, C.S., Nagarajan, V., Hill, B.K., Roytburd, A.L., Williams, E.D., Ramesh, R., Alpay, S.P., Roelofs, A., Waser, R., and Eng, L.M.: Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91, 1477 (2002).Google Scholar
38.Shvartsman, V.V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., and Sternberg, A.: Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 86, 202907 (2005).CrossRefGoogle Scholar
39.Desmarais, J., Ihlefeld, J.F., Heeg, T., Schubert, J., Schlom, D.G., and Huey, B.D.: Mapping and statistics of ferroelectric domain boundary angles and types. Appl. Phys. Lett. 99, 162902 (2011).Google Scholar
40.Catalan, G., Bea, H., Fusil, S., Bibes, M., Paruch, P., Barthelemy, A., and Scott, J.F.: Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100, 027602 (2008).Google Scholar
41.Catalan, G. and Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).Google Scholar
42.Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S.V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., and Ramesh, R.: Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009).CrossRefGoogle ScholarPubMed
43.Nagarajan, V., Roytburd, A., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melngailis, J., Auciello, O., and Ramesh, R.: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43 (2003).CrossRefGoogle ScholarPubMed
44.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).Google Scholar
45.Martin, L.W., Chu, Y.-H., Holcomb, M.B., Huijben, M., Yu, P., Han, S.-J., Lee, D., Wang, S.X., and Ramesh, R.: Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050 (2008).Google Scholar
46.Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).Google Scholar
47.Salje, E.K.H.: Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940 (2010).Google Scholar
48.Sharma, P., Reece, T.J., Ducharme, S., and Gruverman, A.: High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett. 11, 1970 (2011).Google Scholar
49.Nonnenmann, S.S., Leaffer, O.D., Gallo, E.M., Coster, M.T., and Spanier, J.E.: Finite curvature-mediated ferroelectricity. Nano Lett. 10, 542 (2010).Google Scholar
50.Rodriguez, B.J., Jesse, S., Alexe, M., and Kalinin, S.V.: Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics. Adv. Mater. 20, 109 (2008).Google Scholar
51.Rodriguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., and Alexe, M.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).CrossRefGoogle ScholarPubMed
52.Kikukawa, A., Hosaka, S., and Imura, R.: Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 66, 3510 (1995).CrossRefGoogle Scholar
53.Nonnenmacher, M., Oboyle, M., and Wickramasinghe, H.: Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
54.Nonnenmacher, M. and Wickramasinghe, H.: Scanning probe microscopy of thermal conductivity and subsurface properties. Appl. Phys. Lett. 61, 168 (1992).Google Scholar
55.Kim, Y., Bae, C., Ryu, K., Ko, H., Kim, Y.K., Hong, S., and Shin, H.: Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy. Appl. Phys. Lett. 94, 032907 (2009).Google Scholar
56.Balke, N., Winchester, B., Ren, W., Chu, Y.H., Morozovska, A.N., Eliseev, E.A., Huijben, M., Vasudevan, R.K., Maksymovych, P., Britson, J., Jesse, S., Kornev, I., Ramesh, R., Bellaiche, L., Chen, L.Q., and Kalinin, S.V.: Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81 (2012).Google Scholar
57.Liu, X., Terabe, K., Nakamura, M., Takekawa, S., and Kitamura, K.: Nanoscale chemical etching of near-stoichiometric lithium tantalate. J. Appl. Phys. 97, 064308 (2005).Google Scholar
58.Dunn, S., Tiwari, D., Jones, P.M., and Gallardo, D.E.: Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver. J. Mater. Chem. 17, 4460 (2007).CrossRefGoogle Scholar
59.Hanson, J.N., Rodriguez, B.J., Nemanich, R.J., and Gruverman, A.: Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction. Nanotechnology 17, 4946 (2006).CrossRefGoogle Scholar
60.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Ferris, J.H., Zhang, Q., and Dunn, S.: Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures. Nano Lett. 2, 589 (2002).CrossRefGoogle Scholar
61.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Shao, R., and Ferris, J.H.: Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795 (2004).CrossRefGoogle Scholar
62.Ferris, J.H., Li, D.B., Kalinin, S.V., and Bonnell, D.A.: Nanoscale domain patterning of lead zirconate titanate materials using electron beams. Appl. Phys. Lett. 84, 774 (2004).Google Scholar
63.Roelofs, A., Bottger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L.M.: Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl. Phys. Lett. 77, 3444 (2000).CrossRefGoogle Scholar
64.Gruverman, A., Rodriguez, B.J., Dehoff, C., Waldrep, J.D., Kingon, A.I., Nemanich, R.J., and Cross, J.S.: Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005).Google Scholar
65.Rodriguez, B.J., Jesse, S., Baddorf, A.P., and Kalinin, S.V.: High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. Phys. Rev. Lett. 96, 237602 (2006).Google Scholar
66.Balke, N., Gajek, M., Tagantsev, A.K., Martin, L.W., Chu, Y.-H., Ramesh, R., and Kalinin, S.V.: Direct observation of capacitor switching using planar electrodes. Adv. Funct. Mater. 20, 3466 (2010).Google Scholar
67.You, L., Liang, E., Guo, R., Wu, D., Yao, K., Chen, L., and Wang, J.: Polarization switching in quasiplanar BiFeO3 capacitors. Appl. Phys. Lett. 97, 062910 (2010).Google Scholar
68.Gruverman, A. and Kalinin, S.V.: Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci. 41, 107 (2006).Google Scholar
69.Kalinin, S.V., Rar, A., and Jesse, S.: A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226 (2006).Google Scholar
70.Elisabeth, S.: Piezoresponse force microscopy (PFM). J. Phys. D: Appl. Phys. 44, 464003 (2011).Google Scholar
71.Kholkin, A., Kalinin, S., Roelofs, A., and Gruverman, A.: Review of ferroelectric domain imaging by piezoresponse force microscopy, In Electrical and Electromechanical Phenomena at the Nanoscale, edited by Kalinin, S.V. and Gruverman, A. (Springer Science, 1, New York, 2007), p. 173.Google Scholar
72.Jungk, T., Hoffmann, A., and Soergel, E.: Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507 (2006).Google Scholar
73.Guo, S., Ovchinnikov, O.S., Curtis, M.E., Johnson, M.B., Jesse, S., and Kalinin, S.V.: Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. J. Appl. Phys. 108, 084103 (2010).Google Scholar
74.Jesse, S. and Kalinin, S.V.: Band excitation in scanning probe microscopy: sines of change. J. Phys. D: Appl. Phys. 44, 464006 (2011).Google Scholar
75.Proksch, R. and Kalinin, S.V.: Energy dissipation measurements in frequency-modulated scanning probe microscopy. Nanotechnology 21, 455705 (2010).Google Scholar
76.Jesse, S., Guo, S., Kumar, A., Rodriguez, B.J., Proksch, R., and Kalinin, S.V.: Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).Google Scholar
77.Kos, A.B. and Hurley, D.C.: Nanomechanical mapping with resonance tracking scanned probe microscope. Meas. Sci. Technol. 19, 015504 (2008).Google Scholar
78.Brian, J.R., Clint, C., Sergei, V.K., and Roger, P.: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).Google Scholar
79.Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., and Rodriguez, B.J.: The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).Google Scholar
80.Jesse, S., Kumar, A., Kalinin, S.V., Gannepali, A., and Proksch, R.: Band excitation scanning probe microscopies. Microsc. Today 18, 34 (2010).Google Scholar
81.Kim, Y., Kumar, A., Tselev, A., Kravchenko, I.I., Han, H., Vrejoiu, I., Lee, W., Hesse, D., Alexe, M., Kalinin, S.V., and Jesse, S.: Nonlinear phenomena in multiferroic nanocapacitors: Joule heating and electromechanical effects. ACS Nano 5, 9104 (2011).Google Scholar
82.Jesse, S., Mirman, B., and Kalinin, S.V.: Resonance enhancement in piezoresponse force microscopy: mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006).CrossRefGoogle Scholar
83.Kalinin, S.V., Jesse, S., and Proksch, R.: Information acquisition and processing in scanning probe microscopy. R&D Mag. 50, 20 (2008).Google Scholar
84.Jesse, S. and Kalinin, S.V.: Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20, 085714 (2009).CrossRefGoogle ScholarPubMed
85.Nikiforov, M., Reukov, V., Thompson, G., Vertegel, A., Guo, S., Kalinin, S., and Jesse, S.: Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology 20, 405708 (2009).Google Scholar
86.Nikiforov, M., Thompson, G., Reukov, V., Jesse, S., Guo, S., Rodriguez, B., Seal, K., Vertegel, A., and Kalinin, S.: Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. ACS Nano 4, 689 (2010).Google Scholar
87.Jesse, S., Guo, S., Kumar, A., Rodriguez, B., Proksch, R., and Kalinin, S.V.: Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).Google Scholar
88.Jesse, S., Baddorf, A.P., and Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).Google Scholar
89.Jesse, S., Lee, H.N., and Kalinin, S.V.: Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).Google Scholar
90.Rodriguez, B.J., Jesse, S., Baddorf, A.P., Zhao, T., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., and Kalinin, S.V.: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).CrossRefGoogle Scholar
91.Jesse, S., Rodriguez, B.J., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Zhang, J., Chen, L.-Q., and Kalinin, S.V.: Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7, 209 (2008).Google Scholar
92.Tan, Z., Roytburd, A.L., Levin, I., Seal, K., Rodriguez, B.J., Jesse, S., Kalinin, S., and Baddorf, A.: Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3–CoFe2O4 epitaxial films. Appl. Phys. Lett. 93, 074101 (2008).Google Scholar
93.Bintachitt, P., Trolier-McKinstry, S., Seal, K., Jesse, S., and Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Appl. Phys. Lett. 94, 042906 (2009).Google Scholar
94.Rodriguez, B.J., Choudhary, S., Chu, Y.H., Bhattacharyya, A., Jesse, S., Seal, K., Baddorf, A.P., Ramesh, R., Chen, L.-Q., and Kalinin, S.V.: Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in Bismuth ferrite. Adv. Funct. Mater. 19, 2053 (2009).Google Scholar
95.Seal, K., Jesse, S., Nikiforov, M., Kalinin, S.V., Fujii, I., Bintachitt, P., and Trolier-McKinstry, S.: Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. Phys. Rev. Lett. 103, 57601 (2009).Google Scholar
96.Wicks, S., Seal, K., Jesse, S., Anbusathaiah, V., Leach, S., Edwin Garcia, R., Kalinin, S.V., and Nagarajan, V.: Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. Acta Mater. 58, 67 (2010).Google Scholar
97.Rodriguez, B.J., Jesse, S., Bokov, A.A., Ye, Z.G., and Kalinin, S.V.: Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Appl. Phys. Lett. 95, 092904 (2009).Google Scholar
98.Rodriguez, B.J., Jesse, S., Morozovska, A.N., Svechnikov, S.V., Kiselev, D.A., Kholkin, A.L., Bokov, A.A., Ye, Z.G., and Kalinin, S.V.: Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions. J. Appl. Phys. 108, 042006 (2010).Google Scholar
99.Rodriguez, B.J., Jesse, S., Kim, J., Ducharme, S., and Kalinin, S.V.: Local probing of relaxation time distributions in ferroelectric polymer nanomesas: time-resolved piezoresponse force spectroscopy and spectroscopic imaging. Appl. Phys. Lett. 92, 232903 (2008).Google Scholar
100.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Morozovska, A.N., Bokov, A.A., and Ye, Z.G.: Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Appl. Phys. Lett. 95, 142902 (2009).Google Scholar
101.Kalinin, S.V., Rodriguez, B.J., Budai, J.D., Jesse, S., Morozovska, A.N., Bokov, A.A., and Ye, Z.G.: Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B 81, 064107 (2010).Google Scholar
102.Bintachitt, P., Jesse, S., Damjanovic, D., Han, Y., Reaney, I.M., Trolier-McKinstry, S., and Kalinin, S.V.: Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc. Natl. Acad. Sci. U.S.A. 107, 7219 (2010).Google Scholar
103.Griggio, F., Jesse, S., Kumar, A., Marincel, D.M., Tinberg, D.S., Kalinin, S.V., and Trolier-McKinstry, S.: Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. Appl. Phys. Lett. 98, 212901 (2011).Google Scholar
104.Jesse, S., Maksymovych, P., and Kalinin, S.V.: Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. Appl. Phys. Lett. 93, 112903 (2008).Google Scholar
105.Maksymovych, P., Balke, N., Jesse, S., Huijben, M., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. J. Mater. Sci. 44, 5095 (2009).CrossRefGoogle Scholar
106.Anbusathaiah, V., Jesse, S., Arredondo, M.A., Kartawidjaja, F.C., Ovchinnikov, O.S., Wang, J., Kalinin, S.V., and Nagarajan, V.: Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater. 58, 5316 (2010).Google Scholar
107.Balke, N., Jesse, S., Morozovska, A., Eliseev, E., Chung, D., Garcia, R.E., Dudney, N.J., and Kalinin, S.V.: Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials. Nat. Nanotechnol. 5, 749 (2010).Google Scholar
108.McLachlan, M.A., McComb, D.W., Ryan, M.P., Morozovska, A.N., Eliseev, E.A., Payzant, E.A., Jesse, S., Seal, K., Baddorf, A.P., and Kalinin, S.V.: Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT. Adv. Funct. Mater. 21, 941 (2011).Google Scholar
109.Kumar, A., Ovchinnikov, O., Guo, S., Griggio, F., Jesse, S., Trolier-McKinstry, S., and Kalinin, S.V.: Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Phys. Rev. B 84, 024203 (2011).Google Scholar
110.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., and Kalinin, S.V.: Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420 (2010).CrossRefGoogle ScholarPubMed
111.Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C., and Kalinin, S.V.: Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution. J. Electrochem. Soc. 158, A982 (2011).Google Scholar
112.Jesse, S., Balke, N., Eliseev, E., Tselev, A., Dudney, N.J., Morozovska, A.N., and Kalinin, S.V.: Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. ACS Nano 5, 9682 (2011).CrossRefGoogle Scholar
113.Ovchinnikov, O., Jesse, S., Guo, S., Seal, K., Bintachitt, P., Fujii, I., Trolier-McKinstry, S., and Kalinin, S.V.: Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Appl. Phys. Lett. 96, 112906 (2010).CrossRefGoogle Scholar
114.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Ivanov, I.N., Dudney, N.J., and Kalinin, S.V.: Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4, 7349 (2010).Google Scholar
115.Vasudevan, R.K., Liu, Y., Li, J., Liang, W.-I., Kumar, A., Jesse, S., Chen, Y.-C., Chu, Y.-H., Nagarajan, V., and Kalinin, S.V.: Nanoscale control of phase variants in strain-engineered BiFeO3. Nano Lett. 11, 3346 (2011).Google Scholar
116.Arruda, T.M., Kumar, A., Kalinin, S.V., and Jesse, S.: Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett. 11, 4161 (2011).Google Scholar
117.Kumar, A., Ovchinnikov, O.S., Funakubo, H., Jesse, S., and Kalinin, S.V.: Real-space mapping of dynamic phenomena during hysteresis loop measurements: dynamic switching spectroscopy piezoresponse force microscopy. Appl. Phys. Lett. 98, 202903 (2011).Google Scholar
118.Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., and Jesse, S.: Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707 (2011).Google Scholar
119.Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y.H., Baddorf, A.P., Chen, L.Q., Ramesh, R., and Kalinin, S.V.: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868 (2009).Google Scholar
120.Damjanovic, D.: Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric–ferroelastic domain walls. Phys. Rev. B 55, R649 (1997).Google Scholar
121.Damjanovic, D.: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).Google Scholar
122.Néel, L.: Theory of Rayleigh's Laws of magnetization. Cahiers Phys. 12, 1 (1942).Google Scholar
123.Kronmüller, H.: Statistical theory of Rayleigh's Law. Physik 30, 9 (1970).Google Scholar
124.Kronmüller, H.: Theory of Rayleigh's Law in magnetically multiaxial and uniaxial crystals. J. Phys. Colloque C1 32, 390 (1971).Google Scholar
125.Preisach, F.: On the magnetic after effects. Z. Phys. A Hadrons Nuclei 94, 277 (1935).Google Scholar
126.Ge, P. and Jouaneh, M.: Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng. 20, 99 (1997).Google Scholar
127.Kim, Y., Kumar, A., Ovchinnikov, O., Jesse, S., Han, H., Pantel, D., Vrejoiu, I., Lee, W., Hesse, D., Alexe, M., and Kalinin, S.V.: First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. ACS Nano 6, 491 (2011).Google Scholar
128.Bouwmeester, H., Kruidhof, H., and Burggraaf, A.: Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics 72, 185 (1994).Google Scholar
129.Vugmeister, B.E.: Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics. Phys. Rev. B 73, 174117 (2006).Google Scholar
130.Kalinin, S.V., Jesse, S., Liu, W., and Balandin, A.A.: Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 88, 153902 (2006).Google Scholar
131.Lu, H., Bark, C.W., Esque de los Ojos, D., Alcala, J., Eom, C.B., Catalan, G., and Gruverman, A.: Mechanical writing of ferroelectric polarization. Science 336, 59 (2012).Google Scholar