Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T07:22:29.024Z Has data issue: false hasContentIssue false

Simultaneously grown single wall carbon nanotube channel and electrodes in a thin film transistor

Published online by Cambridge University Press:  22 June 2012

Jinsup Lee
Affiliation:
Department of Material Science and Engineering, NanoCentury KI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
Bo-Hyun Kim
Affiliation:
Department of Material Science and Engineering, NanoCentury KI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seong Jun Kang
Affiliation:
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
Kar Tham Hyun
Affiliation:
Department of Material Science and Engineering, NanoCentury KI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seok-Hee Lee
Affiliation:
Department of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seokwoo Jeon*
Affiliation:
Department of Material Science and Engineering, NanoCentury KI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of korea
*
Address all correspondence to Seokwoo Jeon at[email protected]
Get access

Abstract

By chemical vapor deposition, aligned single wall carbon nanotubes (SWNTs) and a network of SWNTs are simultaneously grown as the channel and the source–drain electrodes of thin film transistors (TFTs). The increase of aligned SWNTs increases the channel conductance without changing the contact resistance. However, the increase of network-type SWNTs from 19 to 32.5 (SWNTs/μm) decreases the contact resistance fivefold. The contact resistance of all-SWNT TFT is three times lower compared with that of an SWNT TFT using metal electrodes. The all-SWNT TFTs transferred on polyethylene terephthalate (PET) show a transparency of >80% in the visible range of wavelengths.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., and Dai, H.: High-[kappa] dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241246 (2002).Google Scholar
2.Yao, Z., Kane, C.L., and Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 29412944 (2000).CrossRefGoogle ScholarPubMed
3.Tans, S.J., Verschueren, A.R.M., and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 4952 (1998).CrossRefGoogle Scholar
4.Chen, Z., Appenzeller, J., Lin, Y., Sippel-Oakley, J., Rinzler, A.G., Tang, J., Wind, S.J., Solomon, P.M., and Avouris, P.: An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).CrossRefGoogle ScholarPubMed
5.Kim, S., Kim, S., Park, J., Ju, S., and Mohammadi, S.: Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 4, 29942998 (2010).Google Scholar
6.Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., and Rinzler, A.G.: Transparent, conductive carbon nanotube films. Science 305, 12731276 (2004).Google Scholar
7.Xu, H., Chen, L., Hu, L., and Zhitenev, N.: Contact resistance of flexible, transparent carbon nanotube films with metals. Appl. Phys. Lett. 97, 143116 (2010).CrossRefGoogle Scholar
8.Geblinger, N., Ismach, A., and Joselevich, E.: Self-organized nanotube serpentines. Nat. Nanotechnol. 3, 195200 (2008).Google Scholar
9.Kocabas, C., Hur, S., Gaur, A., Meitl, M.A., Shim, M., and Rogers, J.A.: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1, 11101116 (2005).CrossRefGoogle ScholarPubMed
10.Kang, S.J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M.A., Rotkin, S.V., and Rogers, J.A.: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2, 230236 (2007).Google Scholar
11.Hu, L., Hecht, D.S., and Grüner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 25132517 (2004).Google Scholar
12.Yao, Z., Postma, H.W.C., Balents, L., and Dekker, C.: Carbon nanotube intramolecular junctions. Nature 402, 273276 (1999).CrossRefGoogle Scholar
13.Franklin, A.D. and Chen, Z.: Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858862 (2010).Google Scholar
14.Chen, Z., Appenzeller, J., Knoch, J., Lin, Y., and Avouris, P.: The role of metal − nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 14971502 (2005).Google Scholar
15.Woo, Y., Duesberg, G.S., and Roth, S.: Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18, 095203 (2007).Google Scholar
16.Austing, D.G., Lefebvre, J., Bond, J., and Finnie, P.: Carbon contacted nanotube field effect transistors. Appl. Phys. Lett. 90, 103112 (2007).CrossRefGoogle Scholar
17.Hong, S.W., Du, F., Lan, W., Kim, S., Kim, H., and Rogers, J.A.: Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene. Adv. Mater. 23, 38213826 (2011).Google Scholar
18.Cao, Q., Zhu, Z., Lemaitre, M.G., Xia, M., Shim, M., and Rogers, J.A.: Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 88, 113511 (2006).Google Scholar
19.Jang, S., Jang, H., Lee, Y., Suh, D., Baik, S., Hong, B.H., and Ahn, J.: Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21, 425201 (2010).Google Scholar
20.Cao, Q., Hur, S.H., Zhu, Z.T., Sun, Y.G., Wang, C.J., Meitl, M.A., Shim, M., and Rogers, J.A.: Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 18, 304309 (2006).Google Scholar
21.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
22.Cui, X.D., Freitag, M., Martel, R., Brus, L., and Avouris, P.: Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 3, 783 (2003).Google Scholar
Supplementary material: File

Lee et al. supplementary material

Supplementary data

Download Lee et al. supplementary material(File)
File 513.5 KB