Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T17:38:36.675Z Has data issue: false hasContentIssue false

Self-organization of SrRuO3 nanowires on ordered oxide surface terminations

Published online by Cambridge University Press:  12 August 2011

Bouwe Kuiper
Affiliation:
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Jeroen L. Blok
Affiliation:
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Harold J.W. Zandvliet
Affiliation:
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Dave H.A. Blank
Affiliation:
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Guus Rijnders
Affiliation:
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Gertjan Koster*
Affiliation:
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
*
Address all correspondence to Gertjan Koster at [email protected]
Get access

Abstract

A method of fabricating oriented single-crystalline SrRuO3 nanowire arrays using a bottom-up approach relying on diffusion-controlled self-organization is demonstrated. DyScO3 substrates exhibiting an ordered striped phase of DyO and ScO2 chemical termination are used as a template for pulsed laser deposition growth of SrRuO3. Here SrRuO3 preferentially nucleates on one type of termination. The resulting nanowires are single crystalline, conducting and isolated from each other, typically 100 nm wide and 5–10 nm high. This preferential growth is studied using a kinetic Monte Carlo model, which provides a guide to optimize growth conditions and tune the dimensions of the nanowires.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004).CrossRefGoogle ScholarPubMed
2.Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., and Lowndes, D.H.: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395 (2005).Google Scholar
3.Koster, G., Verbist, K., Rijnders, G., Rogalla, H., van Tendeloo, G., and Blank, D.H.A.: Structure and properties of (Sr,Ca)CuO2BaCuO2 superlattices grown by pulsed laser interval deposition. Physica C 353, 167 (2001).Google Scholar
4.Kleibeuker, J.E., Koster, G., Siemons, W., Dubbink, D., Kuiper, B., Blok, J.L., Yang, C.-H., Ravichandran, J., Ramesh, R., ten Elshof, J.E., Blank, D.H.A., and Rijnders, G.: Atomically defined rare-earth scandate crystal surfaces. Adv. Funct. Mater. 20, 3490 (2010).CrossRefGoogle Scholar
5.Koster, G., Kropman, B.L., Rijnders, G.J.H.M., Blank, D.H.A., and Rogalla, H.: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920 (1998).CrossRefGoogle Scholar
6.Rijnders, G., Blank, D.H.A., Choi, J., and Eom, C-B.: Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth. Appl. Phys. Lett. 84, 505 (2004).Google Scholar
7.MacManus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).CrossRefGoogle Scholar
8.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).Google Scholar
9.Koster, G., Rijnders, G., Blank, D.H.A., and Rogalla, H.: Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000).Google Scholar
10.He, J., Dittmann, R., Karthäuser, S., and Vasco, E.. Geometric shadowing from rippled SrRuO3 SrTiO3 surface templates induces self-organization of epitaxial SrZrO3 nanowires. Phys. Rev. B74, 205410 ( 2006).Google Scholar
11.Herranz, G., Sánchez, F., Dix, N., Hrabovsky, D., Infante, I.C., Fontcuberta, J., Garcia-Cuenca, M.V., Ferrater, C., and Varela, M.: Controlled magnetic anisotropy of SrRuO3 thin films grown on nominally exact SrTiO3 (001) substrates. Appl. Phys. Lett. 89, 152501 ( 2006).Google Scholar
12.Sánchez, F., Herranz, G., Infante, I.C., Ferrater, C., García-Cuenca, M.V., Varela, M., and Fontcuberta, J.: Growth modes and self-organization in the epitaxy of ferromagnetic SrRuO3 on SrTiO3 (001). Prog. Solid State Chem. 34, 213 (2006).Google Scholar
13.Siemons, W., Koster, G., Vailionis, A., Yamamoto, H., Blank, D.H.A., and Beasley, M.R.: Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry. Phys. Rev. B 76, 075126 ( 2007).Google Scholar
14.Bachelet, R., Sànchez, F., Santiso, J., Munuera, C., Ocal, C., and Fontcuberta, J.. Self-assembly of SrTiO3 (001) chemical-terminations: a route for oxide-nanostructure fabrication by selective growth: Chem. Mater. 21, 2494 (2009).Google Scholar
15.Vasco, E., Dittmann, R., Karthäuser, S., and Waser, R.: Fabrication of stress-induced SrRuO3 nanostructures by pulsed laser deposition. Appl. Phys. A 79, 1461 (2004).CrossRefGoogle Scholar
16.Maksym, P.A.: Fast Monte Carlo simulation of MBE growth. Semicond. Sci. Tech. 3, 594 (1988).Google Scholar
17.Rijnders, G. and Blank, D.H.A.: Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (John Wiley & Sons, Inc., Hoboken, NJ, 2006).Google Scholar
Supplementary material: Image

Kuiper Supplementary Image

Kuiper Supplementary Image

Download Kuiper Supplementary Image(Image)
Image 11 MB