Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T10:34:04.610Z Has data issue: false hasContentIssue false

Scanning thermal probe calibration for accurate measurement of thermal conductivity of ultrathin films

Published online by Cambridge University Press:  22 April 2019

Adam A. Wilson*
Affiliation:
National Academy of Sciences, National Research Council, 500 E. 5th Street NW, Washington, DC 20001, USA Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA
*
Address all correspondence to Adam A. Wilson at [email protected]
Get access

Abstract

Scanning thermal microscopy allows thermal characterization with nanoscale resolution. However, quantitative usage has been met with skepticism, because no standard exists for calibrating probe–sample thermal exchange. In this paper, three published strategies for calibrating probe–sample thermal exchange are directly compared, then used to measure bulk and thin-film thermal conductivity. It is shown that with an appropriately calibrated probe and film-on-substrate heat conduction model, thermal conductivity values of ultrathin-film (2.9–202 nm) Al2O3 on silicon are within 20% deviation of independently measured values, while more commonly used methods yield values that may deviate by more a factor of two.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., and Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).10.1063/1.4832615Google Scholar
2.Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ganping, J., Yiao-Tee, H., and Erden, M.F.: Heat assisted magnetic recording. Proc. IEEE 96, 18101835 (2008).Google Scholar
3.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105114 (2008).10.1038/nmat2090Google Scholar
4.Abad, B., Borca-Tasciuc, D.A., and Martin-Gonzalez, M.S.: Non-contact methods for thermal properties measurement. Renewable Sustainable Energy Rev. 76, 13481370 (2017).10.1016/j.rser.2017.03.027Google Scholar
5.Juszczyk, J., Kazmierczak-Balata, A., Firek, P., and Bodzenta, J.: Measuring thermal conductivity of thin films by scanning thermal microscopy combined with thermal spreading resistance analysis. Ultramicroscopy 175, 8186 (2017).10.1016/j.ultramic.2017.01.012Google Scholar
6.Wilson, A. A.: Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method. Doctor of Philosophy Dissertation, Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, 2017.Google Scholar
7.Wilson, A.A. and Borca-Tasciuc, T.: Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Rev. Sci. Instrum. 88, 074903 (2017).Google Scholar
8.Wilson, A.A., Munoz Rojo, M., Abad, B., Perez, J.A., Maiz, J., Schomacker, J., Martin-Gonzalez, M., Borca-Tasciuc, D.A., and Borca-Tasciuc, T.: Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3omega mode and novel calibration strategies. Nanoscale 7, 1540415412 (2015).Google Scholar
9.DeCoster, M.E., Meyer, K.E., Piercy, B.D., Gaskins, J.T., Donovan, B.F., Giri, A., Strnad, N.A., Potrepka, D.M., Wilson, A.A., Losego, M.D., and Hopkins, P.E.: Density and size effects on the thermal conductivity of atomic layer deposited TiO 2 and Al 2 O 3 thin films. Thin Solid Films 650, 7177 (2018).Google Scholar
10.Gorbunov, V.V., Fuchigami, N., Hazel, J.L., and Tsukruk, V.V.: Probing surface microthermal properties by scanning thermal microscopy. Langmuir 15, 83408343 (1999).Google Scholar
11.Lefèvre, S., Volz, S., Saulnier, J.-B., Fuentes, C., and Trannoy, N.: Thermal conductivity calibration for hot wire based dc scanning thermal microscopy. Rev. Sci. Instrum. 74, 24182423 (2003).Google Scholar
12.Wilson, A. A., Borca-Tasciuc, T., Wang, H., and Yu, C.: Thermal conductivity of double-wall carbon nanotube-polyanaline composites measured by a non-contact scanning hot probe technique. In IEEE 16th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, USA, 2017, p. 456.Google Scholar
13.Wilson, A. A., Graziano, M., Rivas, M., Baker, D., and Hanrahan, B.: Effective thermal conductivity of iridium oxide nanostructures by a combined non-contact and contact mode scanning hot probe technique. In Electronic and Advanced Materials Conference, Orlando, FL, USA, 2018.Google Scholar
14.Makris, A., Haeger, T., Heiderhoff, R., and Riedl, T.: From diffusive to ballistic Stefan–Boltzmann heat transport in thin non-crystalline films. RSC Adv. 6, 9419394199 (2016).Google Scholar
15.Heiderhoff, R., Haeger, T., Dawada, K., and Riedl, T.: From diffusive in-plane to ballistic out-of-plane heat transport in thin non-crystalline films. Microelectron. Reliab. 76–77, 222226 (2017).Google Scholar
16.Massoud, A.M., Bluet, J.M., Lacatena, V., Haras, M., Robillard, J.F., and Chapuis, P.O.: Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy. Appl. Phys. Lett. 111, 063106 (2017).10.1063/1.4997914Google Scholar
17.Chung, J., Kim, K., Hwang, G., Kwon, O., Jung, S., Lee, J., Lee, J.W., and Kim, G.T.: Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method. Rev. Sci. Instrum. 81, 114901 (2010).Google Scholar
18.Kim, K., Chung, J., Hwang, G., Kwon, O., and Lee, J.: Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. ACS Nano 5, 87008709 (2011).Google Scholar
19.Kim, K., Chung, J., Won, J., Kwon, O., Lee, J.S., Park, S.H., and Choi, Y.K.: Quantitative scanning thermal microscopy using double scan technique. Appl. Phys. Lett. 93, 203115 (2008).Google Scholar
20.Lefèvre, S., Saulnier, J.B., Fuentes, C., and Volz, S.: Probe calibration of the scanning thermal microscope in the AC mode. Superlattices Microstruct. 35, 283288 (2004).Google Scholar
21.Glassbrenner, C.J. and Slack, G.A.: Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058A1069 (1964).Google Scholar
22.Kaźmierczak-Bałata, A., Bodzenta, J., Krzywiecki, M., Juszczyk, J., Szmidt, J., and Firek, P.: Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films. Thin Solid Films 545, 217221 (2013).Google Scholar
23.Puyoo, E., Grauby, S., Rampnoux, J.M., Rouviere, E., and Dilhaire, S.: Thermal exchange radius measurement: application to nanowire thermal imaging. Rev. Sci. Instrum. 81, 073701 (2010).10.1063/1.3455214Google Scholar
24.Zhang, Y., Hapenciuc, C.L., Castillo, E.E., Borca-Tasciuc, T., Mehta, R.J., Karthik, C., and Ramanath, G.: A microprobe technique for simultaneously measuring thermal conductivity and Seebeck coefficient of thin films. Appl. Phys. Lett. 96, 062107 (2010).Google Scholar
25.Puyoo, E., Grauby, S., Rampnoux, J.-M., Rouvière, E., and Dilhaire, S.: Scanning thermal microscopy of individual silicon nanowires. J. Appl. Phys. 109, 024302 (2011).10.1063/1.3524223Google Scholar
26.Zhang, Y., Castillo, E.E., Mehta, R.J., Ramanath, G., and Borca-Tasciuc, T.: A noncontact thermal microprobe for local thermal conductivity measurement. Rev. Sci. Instrum. 82, 024902 (2011).Google Scholar
27.Dryden, R.: Effect of a surface coating on the constriction resistance of a spot in an infinite half-plane. J. Heat Transfer 105, 408410 (1983).10.1115/1.3245596Google Scholar
28.Li, T.-L. and Hsu, S.L.-C.: Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J. Phys. Chem. B 114, 68256829 (2010).10.1021/jp101857wGoogle Scholar
29.Williams, I. and Shawyer, R.: Certification Report for a Pyrex Glass Reference Material for Thermal Conductivity between-75° C and 195° C. Commission of the European Communities, 1991.Google Scholar
Supplementary material: File

Wilson supplementary material

Wilson supplementary material 1

Download Wilson supplementary material(File)
File 59 KB