Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T10:44:22.611Z Has data issue: false hasContentIssue false

Salt-templated platinum–palladium porous macrobeam synthesis

Published online by Cambridge University Press:  05 November 2018

Fred. J. Burpo*
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
Enoch A. Nagelli
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
Alexander N. Mitropoulos
Affiliation:
Department of Mathematical Sciences, Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
Stephen F. Bartolucci
Affiliation:
United States Army Armaments Research, Development and Engineering Center, Watervliet, NY 12189, USA
Joshua P. McClure
Affiliation:
United States Army Research Laboratory-Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA
David R. Baker
Affiliation:
United States Army Research Laboratory-Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA
Anchor R. Losch
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
Deryn D. Chu
Affiliation:
United States Army Research Laboratory-Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA
*
Address all correspondence to Fred J. Burpo at [email protected]
Get access

Abstract

Here we present the synthesis of porous platinum–palladium macrobeams templated from high aspect ratio Magnus’ salt needle derivatives. The combination of [PtCl4]2− and/or [PdCl4]2− with [Pt(NH3)4]2+ ions results in salt needles ranging from 15 to 300 µm in length. Electrochemical reduction of the salt templates results in porous macrobeams with a square cross-section. Porous side wall texture and elemental composition was controlled with initial platinum to palladium salt ratio. Macrobeam free-standing films exhibited a specific capacitance up to 11.73 F/g and a solvent accessible surface area of 26.6 m2/g. These salt-templated porous platinum–palladium macrobeams offer a promising material for fuel cell catalysis.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally.

References

1.Jiang, B., Kani, K., Iqbal, M., Abe, H., Kimura, T., Hossain, M.S.A., Anjaneyulu, O., Henzie, J., and Yamauchi, Y.: Mesoporous bimetallic RhCu alloy nanospheres using a sophisticated soft-templating strategy. Chem. Mater. 30, 428 (2018).Google Scholar
2.Qiu, X., Dai, Y., Zhu, X., Zhang, H., Wu, P., Tang, Y., and Wei, S.: Template-engaged synthesis of hollow porous platinum–palladium alloy nanospheres for efficient methanol electro-oxidation. J. Power Sources 302, 195 (2016).Google Scholar
3.Liu, L., Pippel, E., Scholz, R., and Gösele, U.: Nanoporous Pt−Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett. 9, 4352 (2009).Google Scholar
4.Xu, C., Zhang, Y., Wang, L., Xu, L., Bian, X., Ma, H., and Ding, Y.: Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem. Mater. 21, 3110 (2009).Google Scholar
5.Yamauchi, Y., Tonegawa, A., Komatsu, M., Wang, H., Wang, L., Nemoto, Y., Suzuki, N., and Kuroda, K.: Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 134, 5100 (2012).Google Scholar
6.Victor, M., Hamed, A.E., Hongjing, W., Bo, J., Cuiling, L., W.K. C.W., Ho, K.J., and Yusuke, Y.: Nanoarchitectures for mesoporous metals. Adv. Mater. 28, 993 (2016).Google Scholar
7.Peng, Z. and Yang, H.: Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano. Today. 4, 143 (2009).Google Scholar
8.Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Marković, N.M.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).Google Scholar
9.Burpo, F.J., Nagelli, E.A., Morris, L.A., McClure, J.P., Ryu, M.Y., and Palmer, J.L.: Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. J. Mater. Res. 32, 4153 (2017).Google Scholar
10.Ding, L.X., Wang, A.L., Li, G.R., Liu, Z.Q., Zhao, W.X., Su, C.Y., and Tong, Y.X.: Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 134, 5730 (2012).Google Scholar
11.Eid, K., Wang, H., He, P., Wang, K., Ahamad, T., Alshehri, S.M., Yamauchi, Y., and Wang, L.: One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 7, 16860 (2015).Google Scholar
12.Shih, Z.Y., Wang, C.W., Xu, G., and Chang, H.T.: Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013).Google Scholar
13.Zhang, H., Jin, M., and Xia, Y.: Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035 (2012).Google Scholar
14.Wu, J., Li, P., Pan, Y.T., Warren, S., Yin, X., and Yang, H.: Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066 (2012).Google Scholar
15.Zhongwei, C., Mahesh, W., Wenzhen, L., and Yushan, Y.: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060 (2007).Google Scholar
16.Li, S.S., Zheng, J.N., Wang, A.J., Tao, F.L., Feng, J.J., Chen, J.R., and Yu, H.: Branched platinum-on-palladium bimetallic heteronanostructures supported on reduced graphene oxide for highly efficient oxygen reduction reaction. J. Power Sources 272, 1078 (2014).Google Scholar
17.Winjobi, O., Zhang, Z., Liang, C., and Li, W.: Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim. Acta 55, 4217 (2010).Google Scholar
18.Vauquelin, N.L.: Memoire sur le palladium et le rhodium. Ann. Chim. 88, 167 (1813).Google Scholar
19.Burpo, F.J., Nagelli, E.A., Winter, S.J., McClure, J.P., Bartolucci, S.F., Burns, A.R., O'Brien, S.F., and Chu, D.D.: Salt-templated hierarchically porous platinum macrotube synthesis. Chem. Select. 3, 4542 (2018).Google Scholar
20.Xiao, X., Song, H., Lin, S., Zhou, Y., Zhan, X., Hu, Z., Zhang, Q., Sun, J., Yang, B., Li, T., Jiao, L., Zhou, J., Tang, J., and Gogotsi, Y.: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016).Google Scholar
21.Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Li, T., Wu, J., Huang, L., Gogotsi, Y., and Zhou, J.: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180 (2017).Google Scholar
22.Magnus, G.: Ueber einige Verbindungen des Platinchlorürs. Ann. Phys. 90, 239 (1828).Google Scholar
23.Schneider, C.A., Rasband, W.S., and Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).Google Scholar
24.Bremi, J., Brovelli, D., Caseri, W., Hähner, G., Smith, P., and Tervoort, T.: From Vauquelin's and Magnus’ salts to gels, uniaxially oriented films, and fibers: synthesis, characterization, and properties of tetrakis(1-aminoalkane)metal(II) tetrachlorometalates(II). Chem. Mater. 11, 977 (1999).Google Scholar
25.Zhou, W.P., Lewera, A., Larsen, R., Masel, R.I., Bagus, P.S., and Wieckowski, A.: Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110, 13393 (2006).Google Scholar
26.R. de Levie: On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 9, 1231 (1964).Google Scholar
27.Lukaszewski, M.: Electrochemical methods of real surface area determination of noble metal electrodes––an overview. Int. J. Electrochem. Sci. 11, 4442 (2016).Google Scholar
28.Biegler, T., Rand, D.A.J., and Woods, R.: Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J. Electroanal. Chem. 29, 269 (1971).Google Scholar
29.Fu, G., Wu, K., Lin, J., Tang, Y., Chen, Y., Zhou, Y., and Lu, T.: One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 117, 9826 (2013).Google Scholar
30.Hien, H.V., Thanh, T.D., Chuong, N.D., Hui, D., Kim, N.H., and Lee, J.H.: Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation. Composites Part B 143, 96 (2018).Google Scholar
Supplementary material: PDF

Burpo et al. supplementary material

Figures S1-S8 and Tables S1-S2

Download Burpo et al. supplementary material(PDF)
PDF 3.7 MB