Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T10:49:21.147Z Has data issue: false hasContentIssue false

Renewable supercapacitors based on cellulose/carbon nanotubes/[Bmim][NTf2] ionic liquid

Published online by Cambridge University Press:  03 April 2019

Bruno S. Noremberg
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of Pelotas, Gomes Carneiro, 1, 96010-000, Pelotas, RS, Brazil
Ricardo M. Silva
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of Pelotas, Gomes Carneiro, 1, 96010-000, Pelotas, RS, Brazil
Oscar G. Paniz
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of Pelotas, Gomes Carneiro, 1, 96010-000, Pelotas, RS, Brazil
José H. Alano
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of Pelotas, Gomes Carneiro, 1, 96010-000, Pelotas, RS, Brazil
Jairton Dupont
Affiliation:
Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
Neftali L. V. Carreño*
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of Pelotas, Gomes Carneiro, 1, 96010-000, Pelotas, RS, Brazil
*
Address all correspondence to Neftali L. V. Carreño at [email protected]
Get access

Abstract

Improvement of the performance of renewable electronic devices is a crucial point for the consolidation of this emerging technology. Herein, we develop a supercapacitor based on cellulose, carbon nanotubes, and ionic liquids. A conductive paper prepared by simple acid hydrolysis of cellulose and carboxylated carbon nanotubes was used as an electrode. A cellulose sponge impregnated with 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide was used as a separator/electrolyte. Electrochemical tests were performed in a two-electrode cell that presented a specific capacitance of 34.37 F/g when considered the active mass and 97.9% of capacitance retention after 5000 charge/discharge cycles.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yao, B., Zhang, J., Kou, T., Song, Y., Liu, T., and Li, Y.: Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 10281036 (2017).Google Scholar
2.Han, J.-W., Kim, B., Li, J., and Meyyappan, M.: A carbon nanotube based humidity sensor on cellulose paper. J. Phys. Chem. C 116, 2209422097 (2012).10.1021/jp3080223Google Scholar
3.Noremberg, B., Silva, S.R., Paniz, M.O., Alano, G.J., Gonçalves, H.M.R.F., Wolke, S., Labidi, I.J., Valentini, A., and Carreno, N.L.V.: From banana stem to conductive paper: A capacitive electrode and gas sensor. Sens. Actuators B 240, 459467 (2017).Google Scholar
4.Devarayan, K., Lei, D., Kim, H., and Kim, B.: Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor. Chem. Eng. J. 273, 603609 (2015).10.1016/j.cej.2015.03.115Google Scholar
5.Liu, S., Yu, T., Wu, Y., Li, W., and Li, B.: Evolution of cellulose into flexible conductive green electronics: a smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Adv. 4, 3413434143 (2014).10.1039/C4RA07017HGoogle Scholar
6.Anothumakkool, B., Soni, R., Bhange, S.N., and Kurungot, S.: Novel scalable synthesis of highly conducting and robust PEDOT paper for high performance flexible solid-supercapacitor. Energy Environ. Sci. 8, 13391347 (2015).10.1039/C5EE00142KGoogle Scholar
7.Gelesky, M., Scheeren, C., Foppa, L., Pavan, F., Dias, S., and Dupont, J.: Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromolecules 5050, 18881893 (2009).10.1021/bm9003089Google Scholar
8.Martins, V., L. R., and Torresi, M. Ionic liquids in electrochemical energy storage. Curr. Opin. Electrochem. 9, 2632 (2018).Google Scholar
9.Pelissari, F.M., Sobral, P.J.D.A., and Menegalli, F.C.: Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21, 417432 (2014).10.1007/s10570-013-0138-6Google Scholar
10.Cassol, C., Ebeling, G., and Ferrera, B.: A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids. Adv. Synth. Catal. 348, 243248 (2006).Google Scholar
11.Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L., MacDonald, A., and Ruof, R.: Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 17 (2014).Google Scholar
12.Rosa, M.F., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L., MacDonald, A., and Ruof, R.: Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 8392 (2010).Google Scholar
13.Silva, R., Noremberg, B., Marins, N., Alano, J., Santana, L. and Valentini, A., and Carreño, N.: Flexible cellulose-carbon nanotube paper substrate decorated with PZT: sensor properties. MRS Adv. 3(1–2), 3136 (2018).Google Scholar
14.Li, S., Huang, D., Yang, J., and Zhang, B.: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309317 (2014).Google Scholar
15.Jorcin, J.B., Orazem, M.E., Pébère, N., and Tribollet, B.: CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51, 14731479 (2006).10.1016/j.electacta.2005.02.128Google Scholar
16.Thangavel, R., Kannan, A., Ponraj, R., Thangavel, V., Kim, D., and Lee, Y.: High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J. Power Sources 383, 102109 (2018).Google Scholar
17.Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wagberg, L., and Cui, Y.: Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2, 138145 (2013).Google Scholar