Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T12:35:13.420Z Has data issue: false hasContentIssue false

Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot

Published online by Cambridge University Press:  25 April 2018

N. Aghoutane
Affiliation:
LaMCScI, Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
M. El-Yadri
Affiliation:
LaMCScI, Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
E. Feddi*
Affiliation:
LaMCScI, Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
F. Dujardin
Affiliation:
LCP-A2MC, Institut de Chimie, Physique et Matériaux, Université de Lorraine, F-57000 Metz, France
M. Sadoqi
Affiliation:
Department of Physics, St. John's College of Liberal Arts and Sciences, St. John's University, Jamaica, NY 11439, USA Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
G. Long*
Affiliation:
Department of Physics, St. John's College of Liberal Arts and Sciences, St. John's University, Jamaica, NY 11439, USA
*
Address all correspondence to Elmustapha Feddi and Gen Long at [email protected] and [email protected]
Address all correspondence to Elmustapha Feddi and Gen Long at [email protected] and [email protected]
Get access

Abstract

We have studied the effect of hydrostatic pressure on the confined exciton in a spherical core–shell quantum dot. Using a simple variational approach under the framework of effective mass approximation, we have computed the excitonic binding energy as a function of the shell thickness under the applied hydrostatic pressure. Our results show that the ground state binding energy of exciton depends greatly on the shell thickness, which tends to the two-dimensional limit of 4RX, when the ratio a/b tends to unity. The numerical calculations also suggest that the applied hydrostatic pressure favors the attraction between electrons and holes so the excitonic binding energy increases when pressure increases.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.: Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).CrossRefGoogle Scholar
2.Zhou, H.S., Honma, I., and Komiyama, H.: Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties. J. Phys. Chem. 97, 895 (1993).CrossRefGoogle Scholar
3.Mews, A., Eychmuller, A., Giersig, M., Schooss, D., and Weller, H.: Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934 (1994).CrossRefGoogle Scholar
4.Haus, J.W., Zhou, H.S., Honma, I., and Komiyana, H.: Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B 47, 1359 (1993).CrossRefGoogle ScholarPubMed
5.Spanhel, L., Weller, H., and Henglein, A.: Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632 (1987).CrossRefGoogle Scholar
6.Hoener, C.F., Allan, K.A., Brad, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E., and White, J.M.: Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812 (1992).CrossRefGoogle Scholar
7.Bryant, G.B.: Theory for quantum-dot quantum wells: pair correlation and internal quantum confinement in nanoheterostructures. Phys. Rev. B 52, 16997 (1995).CrossRefGoogle ScholarPubMed
8.Ferreyra, J.M. and Proetto, C.R.: Excitons in inhomogeneous quantum dots. Phys. Rev. B 57, 9061 (1998).CrossRefGoogle Scholar
9.El Khamkhami, J., Feddi, E., Assaidc, E., Dujardind, F., Stèbè, B., and Diouri, J.: Binding energy of excitons in inhomogeneous quantum dots under uniform electric field. Physica E 15, 99106 (2002).CrossRefGoogle Scholar
10.Yu, P.Y. and Cordona, M.: Fundamentals of Semiconductors (Springer, Berlin, 1998).Google Scholar
11.Ha, S.H. and Ban, S.L.: Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys. Condens. Matter. 20, 085218 (2008).CrossRefGoogle Scholar
12.Arunachalama, N., Peter, A.J., and Lee, C.W.: Pressure induced optical absorption and refractive index changes of a shallow hydrogenic impurity in a quantum wire. Physica E 44, 222228 (2011).CrossRefGoogle Scholar
13.El-Yadri, M., Aghoutane, N., Feddi, E., and Dujardin, F.: Tunable excitonic transitions in strained GaAs ultra-thin quantum disk. Superlattices Microstruct. 102, 382390 (2017).CrossRefGoogle Scholar
14.El Haouari, M., Talbi, A., Feddi, E., El Ghazi, H., Oukerroume, A., and Dujardin, F.: Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231237 (2017).CrossRefGoogle Scholar
15.Wagner, J.-M. and Bechstedt, F.: Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66, 115202 (2002).CrossRefGoogle Scholar
16.Duque, C.M., Morales, A.L., Mora-Ramos, M.E., and Duque, C.A.: Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure. Phys. Status Solidi B 252, 4, 670677 (2015).CrossRefGoogle Scholar
17.Eshghi, H.: The effect of hydrostatic pressure on material parameters and electrical transport properties in bulk GaN. Phys. Lett. A 373, 17731776 (2009).CrossRefGoogle Scholar
18.Zhang, M. and Shi, J.J.: Influence of pressure on exciton states and interband optical transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization and dielectric mismatch. J. Appl. Phys. 111, 113516 (2012).CrossRefGoogle Scholar
19.Culchac, F.J., Porras-Montenegro, N., and Latge, A.: Hydrostatic pressure effects on electron states in GaAs–(Ga,Al)As double quantum rings. J. Appl. Phys. 105, 094324 (2009).CrossRefGoogle Scholar
20.Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., and Duque, C.A.: Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: effects of hydrostatic pressure and aluminum concentration. J. Lumin. 134, 594599 (2013).CrossRefGoogle Scholar
21.Barseghyan, M.G., Mora-Ramos, M.E., and Duque, C.A.: Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl–Teller quantum ring. Eur. Phys. J. B 84, 265 (2011).CrossRefGoogle Scholar
22.Dujardin, F., Feddi, E., Assaid, E., and Oukerroum, A.: Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots. Eur. Phys. J. B 74, 507 (2010).CrossRefGoogle Scholar
23.Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., and Zazoui, M.: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015).CrossRefGoogle Scholar
24.El Khamkhami, J., Feddi, E., Assaid, E., Dujardin, F., Stébé, B., and Diouri, J.: Low magnetic field effect on the polarisability of excitons in spherical quantum dots. Phys. Scr. 64, 504 (2001).CrossRefGoogle Scholar
25.Atanasoff, J.V.: The dielectric constant of helium. Phys. Rev. 36, 1232 (1930).CrossRefGoogle Scholar