Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T05:47:26.689Z Has data issue: false hasContentIssue false

Planet–satellite nanostructures from inorganic nanoparticles: from synthesis to emerging applications

Published online by Cambridge University Press:  20 December 2019

Christian Rossner*
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Physikalische Chemie und Physik der Polymere, D-01069Dresden, Germany
Andreas Fery
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Physikalische Chemie und Physik der Polymere, D-01069Dresden, Germany
*
Address all correspondence to Christian Rossner at [email protected]
Get access

Abstract

Planet–satellite-type supracolloidal clusters represent a comparably young class of nanomaterials, which are unique with regard to structural order. In this prospective article, different approaches for their synthesis are discussed and compared. These synthetic methods enable the engineering of supracolloidal structural and adaptive properties, which in turn enables different emerging applications, such as in sensing and catalysis. These possibilities are explored on the basis of selected recent examples. A perspective about possible future developments is given at the end of this article.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Michael Buback on the occasion of his 75th birthday.

References

1.Plüisch, C.S. and Wittemann, A.: Assembly of nanoparticles into “colloidal molecules”: toward complex and yet defined colloids with exciting perspectives. In Advances in Colloid Science, edited by Rahman, M. and Asiri, A.M. (InTech, Rijeka, 2016) pp. 237264.Google Scholar
2.Mayer, M., Schnepf, M.J., König, T.A.F., and Fery, A.: Colloidal self-assembly concepts for plasmonic metasurfaces. Adv. Opt. Mater. 7, 1800564 (2019).CrossRefGoogle Scholar
3.Yoon, J.H. and Yoon, S.: Probing interfacial interactions using core-satellite plasmon rulers. Langmuir 29, 14772 (2013).CrossRefGoogle ScholarPubMed
4.Rossner, C. and Vana, P.: Planet–satellite nanostructures made to order by RAFT star polymers. Angew. Chem. Int. Ed. 53, 12639 (2014).Google ScholarPubMed
5.Liu, N., Prall, B.S., and Klimov, V.I.: Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 128, 15362 (2006).CrossRefGoogle ScholarPubMed
6.Schreiber, R., Do, J., Roller, E.M., Zhang, T., Schüller, V.J., Nickels, P.C., Feldmann, J., and Liedl, T.: Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9, 74 (2014).CrossRefGoogle ScholarPubMed
7.Chapman, B.S., Wu, W.C., Li, Q., Holten-Andersen, N., and Tracy, J.B.: Heteroaggregation approach for depositing magnetite nanoparticles onto silica-overcoated gold nanorods. Chem. Mater. 29, 10362 (2017).CrossRefGoogle Scholar
8.Xie, W., Walkenfort, B., and Schlücker, S.: Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135, 1657 (2013).CrossRefGoogle ScholarPubMed
9.Torimoto, T., Horibe, H., Kameyama, T., Okazaki, K.I., Ikeda, S., Matsumura, M., Ishikawa, A., and Ishihara, H.: Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J. Phys. Chem. Lett. 2, 2057 (2011).CrossRefGoogle Scholar
10.Gellner, M., Steinigeweg, D., Ichilmann, S., Salehi, M., Schütz, M., Kömpe, K., Haase, M., and Schlücker, S.: 3D self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level. Small 7, 3445 (2011).CrossRefGoogle ScholarPubMed
11.Schütz, M. and Schlücker, S.: Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity. Phys. Chem. Chem. Phys. 17, 24356 (2015).CrossRefGoogle ScholarPubMed
12.Yoon, J.H., Lim, J., and Yoon, S.: Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. ACS Nano 6, 7199 (2012).CrossRefGoogle ScholarPubMed
13.Gandra, N. and Singamaneni, S.: “Clicked” plasmonic core–satellites: covalently assembled gold nanoparticles. Chem. Commun. 48, 11540 (2012).CrossRefGoogle ScholarPubMed
14.Gandra, N., Abbas, A., Tian, L., and Singamaneni, S.: Plasmonic planet−satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett. 12, 2645 (2012).CrossRefGoogle ScholarPubMed
15.Borsley, S., Flook, S., and Kay, E.R.: Rapid and simple preparation of remarkably stable binary nanoparticle planet–satellite assemblies. Chem. Commun. 51, 7812 (2015).CrossRefGoogle ScholarPubMed
16.Guo, J., Tardy, B.L., Christofferson, A.J., Dai, Y., Richardson, J.J., Zhu, W., Hu, M., Ju, Y., Cui, J., Dagastine, R.R., Yarovsky, I., and Caruso, F.: Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 11, 1105 (2016).CrossRefGoogle ScholarPubMed
17.Chen, G., Gibson, K.J., Liu, D., Rees, H.C., Lee, J.H., Xia, W., Lin, R., Xin, H.L., Gang, O., and Weizmann, Y.: Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 18, 169 (2019).CrossRefGoogle ScholarPubMed
18.Rossner, C. and Vana, P.: Nanocomposites and self-assembled structures via controlled radical polymerization. Adv. Polym. Sci. 270, 193 (2016).CrossRefGoogle Scholar
19.Wu, L., Glebe, U., and Böker, A.: Fabrication of thermoresponsive plasmonic core–satellite nanoassemblies with a tunable stoichiometry via surface-initiated reversible addition–fragmentation chain transfer polymerization from silica nanoparticles. Adv. Mater. Interfaces 4, 1700092 (2017).CrossRefGoogle Scholar
20.Li, C. and Benicewicz, B.C.: Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38, 5929 (2005).CrossRefGoogle Scholar
21.Tian, J., Huang, B., and Zhang, W.: Precise self-assembly and controlled catalysis of thermoresponsive core–satellite multicomponent hybrid nanoparticles. Langmuir 35, 266 (2019).CrossRefGoogle ScholarPubMed
22.Lu, Y., Mei, Y., Drechsler, M., and Ballauff, M.: Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 45, 813 (2006).CrossRefGoogle ScholarPubMed
23.Lu, Y., Mei, Y., Ballauff, M., and Drechsler, M.: Thermosensitive core–shell particles as carrier systems for metallic nanoparticles. J. Phys. Chem. B 110, 3930 (2006).CrossRefGoogle ScholarPubMed
24.Roa, R., Lu, Y., Dzubiella, J., Piazza, F., Ballauff, M., and Angioletti-Uberti, S.: Catalysis by metallic nanoparticles in solution: thermosensitive microgels as nanoreactors. Z. Phys. Chem. 232, 773 (2018).CrossRefGoogle Scholar
25.Tzounis, L., Doña, M., Lopez-Romero, J.M., Fery, A., and Contreras-Caceres, R.: Temperature-controlled catalysis by core–shell–satellite AuAg@pNIPAM@Ag hybrid microgels: a highly efficient catalytic thermoresponsive nanoreactor. ACS Appl. Mater. Interfaces 11, 29360 (2019).CrossRefGoogle ScholarPubMed
26.Pierrat, S., Zins, I., Breivogel, A., and Sönnichsen, G.: Self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett. 7, 259 (2007).CrossRefGoogle ScholarPubMed
27.Fan, Z., Tebbe, M., Fery, A., Agarwal, S., and Greiner, A.: Assembly of gold nanoparticles on gold nanorods using functionalized poly(N-isopropylacrylamide) as polymeric “glue”. Part. Part. Syst. Charact. 33, 698 (2016).CrossRefGoogle Scholar
28.Han, F., Vivekchand, S.R.C., Soeriyadi, A.H., Zheng, Y., and Gooding, J.J.: Thermoresponsive plasmonic core–satellite nanostructures with reversible, temperature sensitive optical properties. Nanoscale 10, 4284 (2018).CrossRefGoogle ScholarPubMed
29.Han, F., Soeriyadi, A.H., and Gooding, J.J.: Reversible thermoresponsive plasmonic core–satellite nanostructures that exhibit both expansion and contraction (UCST and LCST). Macromol. Rapid Commun. 39, 1800451 (2018).CrossRefGoogle Scholar
30.Marcelo, G., Burns, F., Ribeiro, T., Martinho, J.M.G., Tarazona, M.P., Saiz, E., Moffitt, M.G., and Farinha, J.P.S.: Versatile tetrablock copolymer scaffold for hierarchical colloidal nanoparticle assemblies: synthesis, characterization, and molecular dynamics simulation. Langmuir 33, 8201 (2017).CrossRefGoogle ScholarPubMed
31.Ribeiro, T., Prazeres, T.J.V., Moffitt, M., and Farinha, J.P.S.: Enhanced photoluminescence from micellar assemblies of cadmium sulfide quantum dots and gold nanoparticles. J. Phys. Chem. C 117, 3122 (2013).CrossRefGoogle Scholar
32.Dey, P., Zhu, S., Thurecht, K.J., Fredericks, P.M., and Blakey, I.: Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers. J. Mater. Chem. B 2, 2827 (2014).CrossRefGoogle ScholarPubMed
33.Gunawidjaja, R., Peleshanko, S., Ko, H., and Tsukruk, V.V.: Bimetallic nanocobs: decorating silver nanowires with gold nanoparticles. Adv. Mater. 20, 1544 (2008).CrossRefGoogle Scholar
34.Rossner, C., Tang, Q., Glatter, O., Müller, M., and Vana, P.: Uniform distance scaling behavior of planet−satellite nanostructures made by star polymers. Langmuir 33, 2017 (2017).CrossRefGoogle ScholarPubMed
35.Peng, W., Rossner, C., Roddatis, V., and Vana, P.: Gold-planet–silver-satellite nanostructures using RAFT star polymer. ACS Macro Lett. 5, 1227 (2016).CrossRefGoogle Scholar
36.Rossner, C., Roddatis, V., Lopatin, S., and Vana, P.: Functionalization of planet–satellite nanostructures revealed by nanoscopic localization of distinct macromolecular species. Macromol. Rapid Commun. 37, 1742 (2016).CrossRefGoogle ScholarPubMed
37.Rossner, C., Glatter, O., and Vana, P.: Stimulus-responsive planet–satellite nanostructures as colloidal actuators: reversible contraction and expansion of the planet-satellite distance. Macromolecules 50, 7344 (2017).CrossRefGoogle Scholar
38.Rossner, C., Tang, Q., Müller, M., and Kothleitner, G.: Phase separation in mixed polymer brushes on nanoparticle surfaces enables the generation of anisotropic nanoarchitectures. Soft Matter 14, 4551 (2018).CrossRefGoogle ScholarPubMed
39.Höller, R.P.M., Dulle, M., Thomä, S., Mayer, M., Steiner, A.M., Förster, S., Fery, A., Kuttner, C., and Chanana, M.: Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano 10, 5740 (2016).CrossRefGoogle ScholarPubMed
40.Kuttner, C., Höller, R.P.M., Quintanilla, M., Schnepf, M.J., Dulle, M., Fery, A., and Liz-Marzán, L.M.: SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. Nanoscale 11, 17655 (2019).CrossRefGoogle ScholarPubMed
41.Li, F., Chen, H., Zhang, Y., Chen, Z., Zhang, Z.P., Zhang, X.E., and Wang, Q.: Three-dimensional gold nanoparticle clusters with tunable cores templated by a viral protein scaffold. Small 8, 3832 (2012).CrossRefGoogle ScholarPubMed
42.Mucic, R.C., Storhoff, J.J., Mirkin, C.A., and Letsinger, R.L.: DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674 (1998).CrossRefGoogle Scholar
43.Pal, S., Sharma, J., Yan, H., and Liu, Y.: Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun. 6059 (2009).CrossRefGoogle ScholarPubMed
44.Edwardson, T.G.W., Lau, K.L., Bousmail, D., Serpell, C.J., and Sleiman, H.F.: Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162 (2016).CrossRefGoogle ScholarPubMed
45.Sebba, D.S., Mock, J.J., Smith, D.R., Labean, T.H., and Lazarides, A.A.: Reconfigurable core–satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett. 8, 1803 (2008).CrossRefGoogle ScholarPubMed
46.Kim, N.H., Lee, S.J., and Moskovits, M.: Reversible tuning of SERS hot spots with aptamers. Adv. Mater. 23, 4152 (2011).CrossRefGoogle ScholarPubMed
47.Li, X., Kao, F.-J., Chuang, C.-C., and He, S.: Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Opt. Express 18, 11335 (2010).CrossRefGoogle ScholarPubMed
48.Yoon, J.H., Zhou, Y., Blaber, M.G., Schatz, G.C., and Yoon, S.: Surface plasmon coupling of compositionally heterogeneous core–satellite nanoassemblies. J. Phys. Chem. Lett. 4, 1371 (2013).CrossRefGoogle ScholarPubMed
49.Lee, J., Hernandez, P., Lee, J., Govorov, A.O., and Kotov, N.A.: Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 6, 291 (2007).CrossRefGoogle ScholarPubMed
50.Chang, Y.-C., Huang, L.-C., Chuang, S.-Y., Sun, W.-L., Lin, T.-H., and Chen, S.-Y.: Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags. Opt. Express 25, 24767 (2017).CrossRefGoogle ScholarPubMed
51.Pazos-Perez, N., Fitzgerald, J.M., Giannini, V., Guerrini, L., and Alvarez-Puebla, R.A.: Modular assembly of plasmonic core–satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Adv. 1, 122 (2019).CrossRefGoogle Scholar
52.Focsan, M., Gabudean, A.M., Vulpoi, A., and Astilean, S.: Controlling the luminescence of carboxyl-functionalized CdSe/ZnS core-shell quantum dots in solution by binding with gold nanorods. J. Phys. Chem. C 118, 25190 (2014).CrossRefGoogle Scholar
53.Sebba, D.S., Labean, T.H., and Lazarides, A.A.: Plasmon coupling in binary metal core–satellite assemblies. Appl. Phys. B Lasers Opt. 93, 69 (2008).CrossRefGoogle Scholar
54.Sebba, D.S. and Lazarides, A.A.: Robust detection of plasmon coupling in core–satellite nanoassemblies linked by DNA. J. Phys. Chem. C 112, 18331 (2008).CrossRefGoogle Scholar
55.Chen, S.Y. and Lazarides, A.A.: Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. J. Phys. Chem. C 113, 12167 (2009).CrossRefGoogle Scholar
56.Xu, L., Kuang, H., Xu, C., Ma, W., Wang, L., and Kotov, N.A.: Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 134, 1699 (2012).CrossRefGoogle ScholarPubMed
57.Wang, C., Du, Y., Wu, Q., Xuan, S., Zhou, J., Song, J., Shao, F., and Duan, H.: Stimuli-responsive plasmonic core–satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. Chem. Commun. 49, 5739 (2013).CrossRefGoogle ScholarPubMed
58.Li, K., Wang, K., Qin, W., Deng, S., Li, D., Shi, J., Huang, Q., and Fan, C.: DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J. Am. Chem. Soc. 137, 4292 (2015).CrossRefGoogle ScholarPubMed
59.Rechberger, W., Hohenau, A., Leitner, A., Krenn, J.R., Lamprecht, B., and Aussenegg, F.R.: Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137 (2003).CrossRefGoogle Scholar
60.Barrow, S.J., Wei, X., Baldauf, J.S., Funston, A.M., and Mulvaney, P.: The surface plasmon modes of self-assembled gold nanocrystals. Nat. Commun. 3, 1275 (2012).CrossRefGoogle ScholarPubMed
61.Pazos-Perez, N., Wagner, C.S., Romo-Herrera, J.M., Liz-Marzán, L.M., García De Abajo, F.J., Wittemann, A., Fery, A., and Alvarez-Puebla, R.A.: Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). Angew. Chem. Int. Ed. 51, 12688 (2012).CrossRefGoogle Scholar
62.Choi, I., Song, H.D., Lee, S., Yang, Y.I., Kang, T., and Yi, J.: Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J. Am. Chem. Soc. 134, 12083 (2012).CrossRefGoogle ScholarPubMed
63.Radziuk, D., Schuetz, R., Masic, A., and Moehwald, H.: Chemical imaging of live fibroblasts by SERS effective nanofilm. Phys. Chem. Chem. Phys. 16, 24621 (2014).CrossRefGoogle ScholarPubMed
64.Herrmann, J.F., Kretschmer, F., Hoeppener, S., Höppener, C., and Schubert, U.S.: Ordered arrangement and optical properties of silica-stabilized gold nanoparticle–PNIPAM core–satellite clusters for sensitive Raman detection. Small 13, 1701095 (2017).CrossRefGoogle ScholarPubMed
65.Prasad, J., Zins, I., Branscheid, R., Becker, J., Koch, A.H.R., Fytas, G., Kolb, U., and Sönnichsen, C.: Plasmonic core–satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 119, 5577 (2015).CrossRefGoogle Scholar
66.Li, M., Cushing, S.K., Wang, Q., Shi, X., Hornak, L.A., Hong, Z., and Wu, N.: Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2, 2125 (2011).CrossRefGoogle Scholar
67.Uddayasankar, U. and Krull, U.J.: Energy transfer assays using quantum dot-gold nanoparticle complexes: optimizing oligonucleotide assay configuration using monovalently conjugated quantum dots. Langmuir 31, 8194 (2015).CrossRefGoogle ScholarPubMed
68.Chang, E., Miller, J.S., Sun, J., Yu, W.W., Colvin, V.L., Drezek, R., and West, J.L.: Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334, 1317 (2005).CrossRefGoogle ScholarPubMed
69.Anger, P., Bharadwaj, P., and Novotny, L.: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 017402 (2006).CrossRefGoogle ScholarPubMed
70.Nepal, D., Drummy, L.F., Biswas, S., Park, K., and Vaia, R.A.: Large scale solution assembly of quantum dot-gold nanorod architectures with plasmon enhanced fluorescence. ACS Nano 7, 9064 (2013).CrossRefGoogle ScholarPubMed
71.Fu, Y., Zhang, J., and Lakowicz, J.R.: Silver-enhanced fluorescence emission of single quantum dot nanocomposites. Chem. Commun. 313 (2009).CrossRefGoogle ScholarPubMed
72.Ingram, D.B., Christopher, P., Bauer, J.L., and Linic, S.: Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441 (2011).CrossRefGoogle Scholar
73.Ponsinet, V., Barois, P., Gali, S.M., Richetti, P., Salmon, J.B., Vallecchi, A., Albani, M., Le Beulze, A., Gomez-Grana, S., Duguet, E., Mornet, S., and Treguer-Delapierre, M.: Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light. Phys. Rev. B 92, 220414 (2015).CrossRefGoogle Scholar
74.Chou, L.Y.T., Zagorovsky, K., and Chan, W.C.W.: DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148 (2014).CrossRefGoogle ScholarPubMed