Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T10:37:33.341Z Has data issue: false hasContentIssue false

Photoelectrochemical response of Fe2O3 films reinforced with BiFeO3 nanofibers

Published online by Cambridge University Press:  05 June 2018

Albert Queraltó
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
Sanjay Mathur*
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
*
Address all correspondence to Prof. Dr. Sanjay Mathur at [email protected]
Get access

Abstract

BiFeO3 (BFO) p-type semiconducting nanofibers were deposited on fluorine-doped SnO2 substrates by a combination of electrospinning (BiFeO3) and spin-coating (Fe2O3) procedures. Photocurrent density values of BFO nanofibers which increased with the annealing temperature to values six times larger were obtained. Different amounts of BFO nanofibers (5, 10, and 25 wt%) were also integrated into α-Fe2O3 films. The photocurrent density of the α-Fe2O3/BFO nanofiber films had the highest value for a 10 wt% BFO nanofibers. The anisotropy in charge transport due to the underlying nanofibrous pathways which prevented the charge carrier recombination was the main cause for the enhancement of the photocurrent density.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, Z., Dinh, H.N., and Miller, E.: Photoelectrochemical Water Splitting, 1st ed. (Springer, New York, 2013), p. 126.Google Scholar
2.Qi, S., Zuo, R., Wang, Y., and Chan, H.W.L.-W.: Synthesis and photocatalytic performance of the electrospun Bi2Fe4O9 nanofibers. J. Mater. Sci. 48, 4143 (2013).Google Scholar
3.Kumar, P.S., Sundaramurthy, J., Sundarrajan, S., Babu, V.J., Singh, G., Allakhverdiev, S.I., and Ramakrishna, S.: Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci. 7, 3192 (2014).Google Scholar
4.Wang, W., Li, N., Chi, Y., Li, Y., Yan, W., Li, X., and Shao, C.: Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceram. Int. 39, 3511 (2013).Google Scholar
5.Feng, Y.-N., Wang, H.-C., Shen, Y., Lin, Y.-H., and Nan, C.-W.: Magnetic and photocatalytic behaviors of Ba-doped BiFeO3 nanofibers. Int. J. App. Ceram. Tec. 11, 676 (2014).Google Scholar
6.Hwang, D.K., Kim, S., Lee, J.-H., Hwang, I.-S., and Kim, I.-D.: Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl–NiO composite nanofibers. J. Mater. Chem. 21, 1959 (2011).Google Scholar
7.Yang, W., Yu, Y., Starr, M.B., Yin, X., Li, Z., Kvit, A., Wang, S., Zhao, P., and Wang, X.: Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15, 7574 (2015).Google Scholar
8.Kim, H.-K., Honda, W., Kim, B.-S., and Kim, I.-S.: Preparation and magnetic properties of electrospun CuO/NiO bimetallic nanofibers via sol–gel electrospinning. J. Mater. Sci. 48, 1111 (2012).Google Scholar
9.Chen, X., and Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).Google Scholar
10.Coll, M., Gazquez, J., Fina, I., Khayat, Z., Quindeau, A., Alexe, M., Varela, M., Trolier-McKinstry, S., Obradors, X., and Puig, T.: Nanocrystalline ferroelectric BiFeO3 thin films by low-temperature atomic layer deposition. Chem. Mater. 27, 6322 (2015).Google Scholar
11.Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V., and Cheong, S.-W.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009).Google Scholar
12.Yang, C.H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., Chu, Y.H., Martin, L.W., Holcomb, M.B., He, Q., Maksymovych, P., Balke, N., Kalinin, S.V., Baddorf, A.P., Basu, S.R., Scullin, M.L., and Ramesh, R.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485 (2009).Google Scholar
13.Li, S., Lin, Y.-H., Zhang, B.-P., Wang, Y., and Nan, C.-W.: Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903 (2010).Google Scholar
14.Rong, N., Chu, M., Tang, Y., Zhang, C., Cui, X., He, H., Zhang, Y., and Xiao, P.: Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J. Mate. Sci. 51, 5712 (2016).Google Scholar
15.Du, C., Yang, X., Mayer, M.T., Hoyt, H., Xie, J., McMahon, G., Bischoping, G., and Wang, D.: Hematite-based water splitting with low turn-on voltages. Angew. Chem. Int. Ed. Engl. 52, 12692 (2013).Google Scholar
16.Qiu, Y., Leung, S.F., Zhang, Q., Hua, B., Lin, Q., Wei, Z., Tsui, K.H., Zhang, Y., Yang, S., and Fan, Z.: Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett. 14, 2123 (2014).Google Scholar
17.Jiang, J., Fan, W., Zhang, X., Bai, H., Liu, Y., Huang, S., Mao, B., Yuan, S., Liu, C., and Shi, W.: Rod-in-tube nanostructure of MgFe2O4: electrospinning synthesis and photocatalytic activities of tetracycline. New J. Chem. 40, 538 (2016).Google Scholar
18.Yuvaraj, S., Fan-Yuan, L., Tsong-Huei, C., and Chuin-Tih, Y.: Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B 107, 1044 (2003).Google Scholar
19.Loría-Bastarrachea, M.I., Herrera-Kao, W., Cauich-Rodríguez, J.V., Cervantes-Uc, J.M., Vázquez-Torres, H., and Ávila-Ortega, A.: A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 104, 737 (2010).Google Scholar
20.Xu, J.-H., Ke, H., Jia, D.-C., Wang, W., and Zhou, Y.: Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method. J. Alloys Compd. 472, 473 (2009).Google Scholar
21.Anthony Raj, C., Muneeswaran, M., Jegatheesan, P., Giridharan, N.V., Sivakumar, V., and Senguttuvan, G.: Effect of annealing time in the low-temperature growth of BFO thin films spin coated on glass substrates. J. Mater. Sci. Mater. Electron. 24, 4148 (2013).Google Scholar
22.Casper, M.D., Losego, M.D., and Maria, J.-P.: Optimizing phase and microstructure of chemical solution-deposited bismuth ferrite (BiFeO3) thin films to reduce DC leakage. J. Mater. Sci. 48, 1578 (2012).Google Scholar
23.Koster, G., Huijben, M., and Rijnders, G.: Epitaxial Growth of Complex Oxides, 1st ed. (Elsevier, Cambridge, 2015), pp. 209229, 480.Google Scholar
24.Zhang, T., Shen, Y., Qiu, Y., Liu, Y., Xiong, R., Shi, J., and Wei, J.: Facial synthesis and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers. ACS Sustain. Chem. Eng. 5, 4630 (2017).Google Scholar
25.Yang, Y.C., Liu, Y., Wei, J.H., Pan, C.X., Xiong, R., and Shi, J.: Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941 (2014).Google Scholar
26.Zhang, Y., Guo, Y., Duan, H., Li, H., Yang, L., Wang, P., Sun, C., Xu, B., and Liu, H.: Photoelectrochemical response and electronic structure analysis of mono-dispersed cuboid-shaped Bi2Fe4O9 crystals with near-infrared absorption. RSC Adv. 4, 28209 (2014).Google Scholar
27.Srinivasan, N., Sakai, E., and Miyauchi, M.: Balanced excitation between two semiconductors in bulk heterojunction Z-scheme system for overall water splitting. ACS Catal. 6, 2197 (2016).Google Scholar
28.Petrović, M., Chellappan, V., Dalapati, G.K., and Ramakrishna, S.: Photocharge generation and transport studies on BFO/poly(3-hexylthiophene) heterojunction. Mater. Lett. 163, 118 (2016).Google Scholar
29.Shinde, S.S., Bansode, R.A., Bhosale, C.H., and Rajpure, K.Y.: Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells. J. Semicond. 32, 013001 (2011).Google Scholar
30.Li, J., and Wu, N.: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360 (2015).Google Scholar
Supplementary material: File

Queraltó and Mathur supplementary material

Figures S1-S3

Download Queraltó and Mathur supplementary material(File)
File 432.6 KB