Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:29:59.292Z Has data issue: false hasContentIssue false

Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases

Published online by Cambridge University Press:  05 April 2018

Tingbin Zhang
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
Qian Zhang
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
Jian-Hua Tian
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
Jin-Feng Xing*
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
Weisheng Guo*
Affiliation:
Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
Xing-Jie Liang*
Affiliation:
Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
*
Address all correspondence to Weisheng Guo, Jin-Feng Xing and Xing-Jie Liang at [email protected], [email protected] and [email protected]
Address all correspondence to Weisheng Guo, Jin-Feng Xing and Xing-Jie Liang at [email protected], [email protected] and [email protected]
Address all correspondence to Weisheng Guo, Jin-Feng Xing and Xing-Jie Liang at [email protected], [email protected] and [email protected]
Get access

Abstract

Nanotechnology has been considered as a promising strategy for diagnosis and treatment of various diseases. However, the stability and circulation times of the conventional nano-carriers, such as liposomes and micelles, are still unsatisfied. Perfluorocarbons (PFCs) are biologic inert synthetic materials, which are highly hydrophobic and have a tendency to self-aggregation. Additionally, PFCs themselves can act as 19F magnetic resonance imaging agents and oxygen carriers. Thus, the construction of the fluorinated carriers will not only improve the stability of the carriers, but also endow them with additional functions. Here we review the recent advances of PFC-based nanosystems for diagnosis and treatment of diseases.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shi, J., Kantoff, P.W., Wooster, R., and Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20 (2017).Google Scholar
2.Adiseshaiah, P.P., Crist, R.M., Hook, S.S., and McNeil, S.E.: Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 13, 750 (2016).Google Scholar
3.Torchilin, V.P.: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813 (2014).CrossRefGoogle ScholarPubMed
4.Chauhan, V.P. and Jain, R.K.: Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958 (2013).Google Scholar
5.Chen, H., Zhang, W., Zhu, G., Xie, J., and Chen, X.: Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).Google Scholar
6.Krafft, M.P. and Riess, J.G.: Chemistry, physical chemistry, and uses of molecular fluorocarbon–hydrocarbon diblocks, triblocks, and related compounds—unique “apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 109, 1714 (2009).Google Scholar
7.Janjic, J.M. and Ahrens, E.T.: Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 492 (2009).Google Scholar
8.Riess, J.G.: Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential. Curr. Opin. Colloid Interface Sci. 14, 294 (2009).CrossRefGoogle Scholar
9.Riess, J.G. and Krafft, M.P.: Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 19, 1529 (1998).Google Scholar
10.Riess, J.G.: Oxygen carriers (“blood substitutes”) Raison d'Etre, chemistry, and some physiology Blut ist ein ganz besondrer Saft. Chem. Rev. 101, 2797 (2001).Google Scholar
11.Castro, C.I. and Briceno, J.C.: Perfluorocarbon-based oxygen carriers: review of products and trials. Artif. Organs 34, 622 (2010).Google Scholar
12.Tirotta, I., Dichiarante, V., Pigliacelli, C., Cavallo, G., Terraneo, G., Bombelli, F.B., Metrangolo, P., and Resnati, G.: 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem. Rev. 115, 1106 (2014).Google Scholar
13.Wang, L.-H., Wu, D.-C., Xu, H.-X., and You, Y.-Z.: High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew. Chem. Int. Ed. 128, 765 (2016).Google Scholar
14.Wang, M., Liu, H., Li, L., and Cheng, Y.: A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 5, 3053 (2014).CrossRefGoogle ScholarPubMed
15.Petros, R.A. and DeSimone, J.M.: Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615 (2010).CrossRefGoogle ScholarPubMed
16.Doane, T.L. and Burda, C.: The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885 (2012).Google Scholar
17.Zhang, T., Zhang, C., Xing, J., Xu, J., Li, C., Wang, P.C., and Liang, X.-J.: Multifunctional dendrimers for drug nanocarriers, In, edited by Keservani, R. K., Sharma, A. K. and Kesharwani, R. K., Novel Approaches for Drug Delivery (Medical Information Science Reference 701, Hershey, PA, 2017) p. 245.CrossRefGoogle ScholarPubMed
18.Mitragotri, S., Burke, P.A., and Langer, R.: Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655 (2014).Google Scholar
19.Ozpolat, B., Sood, A.K., and Lopez-Berestein, G.: Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 66, 110 (2014).CrossRefGoogle ScholarPubMed
20.D'Mello, S.R., Cruz, C.N., Chen, M.-L., Kapoor, M., Lee, S.L., and Tyner, K.M.: The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12, 523 (2017).Google Scholar
21.Pattni, B.S., Chupin, V.V., and Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938 (2015).Google Scholar
22.Barenholz, Y.: Doxil®-the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117 (2012).Google Scholar
23.Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., and Chan, W.C.W.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).CrossRefGoogle Scholar
24.Allen, T.M. and Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36 (2013).CrossRefGoogle ScholarPubMed
25.Caponigro, F., Cornelia, P., Budillon, A., Bryce, J., Avallone, A., De Rosa, V., Ionna, F., and Cornelia, G.: Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann. Oncol. 11, 339 (2000).Google Scholar
26.Yang, T., Cui, F.-D., Choi, M.-K., Cho, J.-W., Chung, S.-J., Shim, C.-K., and Kim, D.-D.: Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int. J. Pharm. 338, 317 (2007).Google Scholar
27.Klibanov, A.L., Maruyama, K., Torchilin, V.P., and Huang, L.: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235 (1990).Google Scholar
28.Vierling, P., Santaella, C., and Greiner, J.: Highly fluorinated amphiphiles as drug and gene carrier and delivery systems. J. Fluor. Chem. 107, 337 (2001).Google Scholar
29.Santaella, C., Frézard, F., Vierling, P., and Riess, J.G.: Extended in vivo blood circulation time of fluorinated liposomes. FEBS Lett. 336, 481 (1993).Google Scholar
30.Klein, E., Ciobanu, M., Klein, J.r.m, Machi, V.r., Leborgne, C., Vandamme, T., Frisch, B.t, Pons, F.o., Kichler, A., Zuber, G., and Lebeau, L.: “HFP” fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. Bioconjug. Chem. 21, 360 (2010).Google Scholar
31.Xiao, Q., Rubien, J.D., Wang, Z., Reed, E.H., Hammer, D.A., Sahoo, D., Heiney, P.A., Yadavalli, S.S., Goulian, M., Wilner, S.E., Baumgart, T., Vinogradov, S.A., Klein, M.L., and Percec, V.: Self-sorting and coassembly of fluorinated, hydrogenated, and hybrid Janus dendrimers into dendrimersomes. J. Am. Chem. Soc. 138, 12655 (2016).Google Scholar
32.Wang, H., Hu, J., Cai, X., Xiao, J., and Cheng, Y.: Self-assembled fluorodendrimers in the co-delivery of fluorinated drugs and therapeutic genes. Polym. Chem. 7, 2319 (2016).Google Scholar
33.Wang, H., Wang, Y., Wang, Y., Hu, J., Li, T., Liu, H., Zhang, Q., and Cheng, Y.: Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 54, 11647 (2015).CrossRefGoogle ScholarPubMed
34.Rosholm, K.R., Arouri, A., Hansen, P.L., González-Pérez, A., and Mouritsen, O.G.: Characterization of fluorinated catansomes: a promising vector in drug-delivery. Langmuir 28, 2773 (2012).Google Scholar
35.Kataoka, K., Harada, A., and Nagasaki, Y.: Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 64, 37 (2012).Google Scholar
36.Kakizawa, Y. and Kataoka, K.: Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 54, 203 (2002).Google Scholar
37.Wei, T., Liu, J., Ma, H., Cheng, Q., Huang, Y., Zhao, J., Huo, S., Xue, X., Liang, Z., and Liang, X.-J.: Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13, 2528 (2013).Google Scholar
38.Gaucher, G., Dufresne, M.-H., Sant, V.P., Kang, N., Maysinger, D., and Leroux, J.-C.: Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109, 169 (2005).CrossRefGoogle ScholarPubMed
39.Kedar, U., Phutane, P., Shidhaye, S., and Kadam, V.: Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714 (2010).Google Scholar
40.Gong, J., Chen, M., Zheng, Y., Wang, S., and Wang, Y.: Polymeric micelles drug delivery system in oncology. J. Control. Release 159, 312 (2012).Google Scholar
41.Feiner-Gracia, N., Buzhor, M., Fuentes, E., Pujals, S., Amir, R.J., and Albertazzi, L.: Micellar stability in biological media dictates internalization in living cells. J. Am. Chem. Soc. 139, 16677 (2017).CrossRefGoogle ScholarPubMed
42.Owen, S.C., Chan, D.P., and Shoichet, M.S.: Polymeric micelle stability. Nano Today 7, 53 (2012).Google Scholar
43.Krafft, M.P.: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 47, 209 (2001).Google Scholar
44.Matsuoka, K. and Moroi, Y.: Micellization of fluorinated amphiphiles. Curr. Opin. Colloid Interface Sci. 8, 227 (2003).Google Scholar
45.Zuckerman, J.E. and Davis, M.E.: Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843 (2015).Google Scholar
46.Stewart, M.P., Sharei, A., Ding, X., Sahay, G., Langer, R., and Jensen, K.F.: In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183 (2016).Google Scholar
47.Zhang, C., Zhang, T., Jin, S., Xue, X., Yang, X., Gong, N., Zhang, J., Wang, P.C., Tian, J.-H., Xing, J., and Liang, X.-J.: Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl. Mater. Interfaces 9, 4425 (2017).Google Scholar
48.Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., and Anderson, D.G.: Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541 (2014).Google Scholar
49.Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N.S., Cai, W., Yang, G., Bronson, R., Crowley, D.G., Zhang, F., Anderson, D.G., Sharp, P.A., and Jacks, T.: CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380 (2014).Google Scholar
50.Kanasty, R., Dorkin, J.R., Vegas, A., and Anderson, D.: Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967 (2013).Google Scholar
51.Wang, L.L., Liu, Y., Chung, J.J., Wang, T., Gaffey, A.C., Lu, M., Cavanaugh, C.A., Zhou, S., Kanade, R., Atluri, P., Morrisey, E.E., and Burdick, J.A.: Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 1, 983 (2017).Google Scholar
52.Truong, N.P., Gu, W., Prasadam, I., Jia, Z., Crawford, R., Xiao, Y., and Monteiro, M.J.: An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun. 4, 1902 (2013).Google Scholar
53.Hernandez-Garcia, A., Kraft, D.J., Janssen, A.F., Bomans, P.H., Sommerdijk, N.A., Thies-Weesie, D.M., Favretto, M.E., Brock, R., de Wolf, F.A., and Werten, M.W.: Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 9, 698 (2014).Google Scholar
54.Mingozzi, F., and High, K.A.: Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341 (2011).CrossRefGoogle ScholarPubMed
55.Naldini, L.: Gene therapy returns to centre stage. Nature 526, 351 (2015).Google Scholar
56.Samal, S.K., Dash, M., Van Vlierberghe, S., Kaplan, D.L., Chiellini, E., van Blitterswijk, C., Moroni, L., and Dubruel, P.: Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 41, 7147 (2012).Google Scholar
57.Oishi, M., Nagasaki, Y., Itaka, K., Nishiyama, N., and Kataoka, K.: Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624 (2005).Google Scholar
58.Gary, D.J., Puri, N., and Won, Y.-Y.: Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 121, 64 (2007).CrossRefGoogle ScholarPubMed
59.He, Y., Nie, Y., Cheng, G., Xie, L., Shen, Y., and Gu, Z.: Viral mimicking ternary polyplexes: a reduction-controlled hierarchical unpacking vector for gene delivery. Adv. Mater. 26, 1534 (2014).Google Scholar
60.Ni, R. and Chau, Y.: Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 136, 17902 (2014).Google Scholar
61.Zhang, T., Song, X., Kang, D., Zhang, L., Zhang, C., Jin, S., Wang, C., Tian, J., Xing, J., and Liang, X.-J.: Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes. J. Mater. Chem. B 3, 4698 (2015).Google Scholar
62.Zhang, T., Guo, W., Zhang, C., Yu, J., Xu, J., Li, S., Tian, J.-H., Wang, P.C., Xing, J.-F., and Liang, X.-J.: Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA. ACS Appl. Mater. Interfaces 9, 16006 (2017).Google Scholar
63.Guo, S., Huang, Y., Jiang, Q., Sun, Y., Deng, L., Liang, Z., Du, Q., Xing, J., Zhao, Y., Wang, P.C., Dong, A., and Liang, X.-J.: Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4, 5505 (2010).Google Scholar
64.Cheng, Y., Yumul, R.C., and Pun, S.H.: Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. 128, 12192 (2016).Google Scholar
65.Noble, J.E., De Santis, E., Ravi, J., Lamarre, B., Castelletto, V., Mantell, J., Ray, S., and Ryadnov, M.G.: A de novo virus-like topology for synthetic virions. J. Am. Chem. Soc. 138, 12202 (2016).Google Scholar
66.Yang, J., Zhang, Q., Chang, H., and Cheng, Y.: Surface-engineered dendrimers in gene delivery. Chem. Rev. 115, 5274 (2015).CrossRefGoogle ScholarPubMed
67.Liu, H., Wang, Y., Wang, M., Xiao, J., and Cheng, Y.: Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials 35, 5407 (2014).Google Scholar
68.Lv, J., Chang, H., Wang, Y., Wang, M., Xiao, J., Zhang, Q., and Cheng, Y.: Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J. Mater. Chem. B 3, 642 (2015).Google Scholar
69.Cai, X., Jin, R., Wang, J., Yue, D., Jiang, Q., Wu, Y., and Gu, Z.: Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. ACS Appl. Mater. Interfaces 8, 5821 (2016).Google Scholar
70.Cai, X., Zhu, H., Zhang, Y., and Gu, Z.: Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl. Mater. Interfaces 9, 9402 (2017).Google Scholar
71.Chen, G., Wang, K., Hu, Q., Ding, L., Yu, F., Zhou, Z., Zhou, Y., Li, J., Sun, M., and Oupický, D.: Combining fluorination and bioreducibility for improved siRNA polyplex delivery. ACS Appl. Mater. Interfaces 9, 4457 (2017).Google Scholar
72.Wesseler, E.P., Iltis, R., and Clark, L.C.: The solubility of oxygen in highly fluorinated liquids. J. Fluor. Chem. 9, 137 (1977).Google Scholar
73.Clark, L.C. and Gollan, F.: Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 152, 1755 (1966).Google Scholar
74.Maluf, D., Mas, V., Yanek, K., Stone, J., Weis, R., Massey, D., Spiess, B., Posner, M., and Fisher, R.: Molecular markers in stored kidneys using perfluorocarbon-based preservation solution: preliminary results. Transplant. Proc. 38, 1243 (2006).Google Scholar
75.Cheng, Y., Cheng, H., Jiang, C., Qiu, X., Wang, K., Huan, W., Yuan, A., Wu, J., and Hu, Y.: Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2014).Google Scholar
76.Riess, J.G.: Highly fluorinated systems for oxygen transport, diagnosis and drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 84, 33 (1994).Google Scholar
77.Lowe, K.: Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171 (1999).Google Scholar
78.Williamson, L.M. and Devine, D.V.: Challenges in the management of the blood supply. Lancet 381, 1866 (2013).Google Scholar
79.Shehata, N., Forster, A., Lawrence, N., Rothwell, D.M., Fergusson, D., Tinmouth, A., and Wilson, K.: Changing trends in blood transfusion: an analysis of 244,013 hospitalizations. Transfusion 54, 2631 (2014).Google Scholar
80.Greinacher, A., Fendrich, K., and Hoffmann, W.: Demographic changes: the impact for safe blood supply. Transfus. Med. Hemother. 37, 141 (2010).CrossRefGoogle ScholarPubMed
81.Hovav, T., Yedgar, S., Manny, N., and Barshtein, G.: Alteration of red cell aggregability and shape during blood storage. Transfusion 39, 277 (1999).Google Scholar
82.Fraker, C.A., Mendez, A.J., and Stabler, C.L.: Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions. J. Phys. Chem. B 115, 10547 (2011).Google Scholar
83.Tao, Z. and Ghoroghchian, P.P.: Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol. 32, 466 (2014).Google Scholar
84.Que, Y., Liu, Y., Tan, W., Feng, C., Shi, P., Li, Y., and Xiaoyu, H.: Enhancing photodynamic therapy efficacy by using fluorinated nanoplatform. ACS Macro Lett. 5, 168 (2016).CrossRefGoogle ScholarPubMed
85.Day, R.A., Estabrook, D.A., Logan, J.K., and Sletten, E.M.: Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem. Commun. 53, 13043 (2017).Google Scholar
86.Shen, Y., Shuhendler, A.J., Ye, D., Xu, J.-J., and Chen, H.-Y.: Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 45, 6725 (2016).Google Scholar
87.Lucky, S.S., Soo, K.C., and Zhang, Y.: Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990 (2015).Google Scholar
88.Riess, J.G.: Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater. Artif. Cells Immobil. Biotechnol. 20, 183 (1992).Google Scholar
89.Song, X., Feng, L., Liang, C., Yang, K., and Liu, Z.: Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 16, 6145 (2016).Google Scholar
90.Flögel, U., Ding, Z., Hardung, H., Jander, S., Reichmann, G., Jacoby, C., Schubert, R., and Schrader, J.: In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140 (2008).Google Scholar
91.Srinivas, M., Heerschap, A., Ahrens, E.T., Figdor, C.G., and de Vries, I.J.M.: 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 28, 363 (2010).CrossRefGoogle ScholarPubMed
92.Kislukhin, A.A., Xu, H., Adams, S.R., Narsinh, K.H., Tsien, R.Y., and Ahrens, E.T.: Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat. Mater. 15, 662 (2016).Google Scholar
93.Guo, Z., Gao, M., Song, M., Li, Y., Zhang, D., Xu, D., You, L., Wang, L., Zhuang, R., Su, X., Liu, T., Du, J., and Zhang, X.: Superfluorinated PEI derivative coupled with 99mTc for ASGPR targeted 19F MRI/SPECT/PA Tri-modality imaging. Adv. Mater. 28, 5898 (2016).Google Scholar
94.Rolfe, B.E., Blakey, I., Squires, O., Peng, H., Boase, N.R.B., Alexander, C., Parsons, P.G., Boyle, G.M., Whittaker, A.K., and Thurecht, K.J.: Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 136, 2413 (2014).Google Scholar