Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T10:41:27.628Z Has data issue: false hasContentIssue false

PCBM nanoparticles as visible-light-driven photocatalysts for photocatalytic decomposition of organic dyes

Published online by Cambridge University Press:  27 December 2018

Chanon Pornrungroj
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Tsunenobu Onodera
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Hidetoshi Oikawa*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*
Address all correspondence to Hidetoshi Oikawa at [email protected]
Get access

Abstract

[6,6]-Phenyl-C61-butyric acid methyl esters (PCBM) have emerged in recent years as important building blocks for photovoltaic devices. However, the potential of PCBM itself as a photocatalyst has not been reviewed. Here, we demonstrate PCBM nanoparticles (NPs) fabricated by the reprecipitation method as suitable photocatalysts for an effective visible-light-driven photocatalytic degradation for organic dyes. An enhanced catalytic performance of PCBM can be achieved by a simple annealing process. The present PCBM NPs outperform the state-of-the-art P25 TiO2 and therefore highlights its potential as promising small molecule organic semiconductor photocatalysts with high photocatalytic activity and good long-term stability.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

References

1.Zhang, F., Zhao, J., Shen, T., Hidaka, H., Pelizzetti, E., and Serpone, N.: TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl. Catal., B 15, 147 (1998).Google Scholar
2.Woolerton, T.W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S.W., and Armstrong, F.A.: Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132, 2132 (2010).Google Scholar
3.Chu, S., Cui, Y., and Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16 (2017).Google Scholar
4.Montoya, J.H., Seitz, L.C., Chakthranont, P., Vojvodic, A., Jaramillo, T.F., and Nørskov, J.K.: Materials for solar fuels and chemicals. Nat. Mater. 16, 70 (2017).Google Scholar
5.Zhao, J., Chen, C., and Ma, W.: Photocatalytic degradation of organic pollutants under visible light irradiation. Top. Catal. 35, 269 (2005).Google Scholar
6.Park, J.: Visible and near infrared light active photocatalysis based on conjugated polymers. J. Ind. Eng. Chem. 51, 27 (2017).Google Scholar
7.Mishra, A. and Bäuerle, P.: Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020 (2012).Google Scholar
8.Vyas, V.S., Haase, F., Stegbauer, L., Savasci, G., Podjaski, F., Ochsenfeld, C., and Lotsch, B.V.: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 6, 8508 (2015).Google Scholar
9.Li, L., Cai, Z., Wu, Q., Lo, W.-Y., Zhang, N., Chen, L.X., and Yu, L.: Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J. Am. Chem. Soc. 138, 7681 (2016).Google Scholar
10.Ma, B.C., Ghasimi, S., Landfester, K., Vilela, F., and Zhang, K.A.: Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J. Mater. Chem. A 3, 16064 (2015).Google Scholar
11.Ghosh, S., Kouamé, N.A., Ramos, L., Remita, S., Dazzi, A., Deniset-Besseau, A., Beaunier, P., Goubard, F., Aubert, P.-H., and Remita, H.: Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14, 505 (2015).Google Scholar
12.Xu, S., Gu, L., Wu, K., Yang, H., Song, Y., Jiang, L., and Dan, Y.: The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. Sol. Energy Mater. Sol. Cells 96, 286 (2012).Google Scholar
13.Wang, L., Huang, W., Li, R., Gehrig, D., Blom, P.W., Landfester, K., and Zhang, K.A.: Structural design principle of small-molecule organic semiconductors for metal-free, visible-light-promoted photocatalysis. Angew. Chem. Int. Ed. 55, 9783 (2016).Google Scholar
14.Zhang, Z., Wang, J., Liu, D., Luo, W., Zhang, M., Jiang, W., and Zhu, Y.: Highly efficient organic photocatalyst with full visible light spectrum through π–π stacking of TCNQ–PTCDI. ACS Appl. Mater. Interfaces 8, 30225 (2016).Google Scholar
15.Dang, M.T., Hirsch, L., and Wantz, G.: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597 (2011).Google Scholar
16.Yoshida, H.: New experimental method to precisely examine the LUMO levels of organic semiconductors and application to the fullerene derivatives. MRS Online Proc. Libr. Arch. 1493, 295 (2013).Google Scholar
17.Ie, Y., Karakawa, M., Jinnai, S., Yoshida, H., Saeki, A., Seki, S., Yamamoto, S., Ohkita, H., and Aso, Y.: Electron-donor function of methanofullerenes in donor–acceptor bulk heterojunction systems. Chem. Commun. 50, 4123 (2014).Google Scholar
18.Zhong, Y., Izawa, S., Hashimoto, K., Tajima, K., Koganezawa, T., and Yoshida, H.: Crystallization-induced energy level change of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) film: impact of electronic polarization energy. J. Phys. Chem. C 119, 23 (2014).Google Scholar
19.Tu, W., Zhou, Y., and Zou, Z.: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607 (2014).Google Scholar
20.von Hauff, E., Dyakonov, V., and Parisi, J.: Study of field effect mobility in PCBM films and P3HT:PCBM blends. Sol. Energy Mater. Sol. Cells 87, 149 (2005).Google Scholar
21.Kasai, H., Nalwa, H.S., Oikawa, H., Okada, S., Matsuda, H., Minami, N., Kakuta, A., Ono, K., Mukoh, A., and Nakanishi, H.: A novel preparation method of organic microcrystals. Jpn. J. Appl. Phys. 31, L1132 (1992).Google Scholar
22.Masuhara, A., Tan, Z., Kasai, H., Nakanishi, H., and Oikawa, H.: Fullerene fine crystals with unique shapes and controlled size. Jpn. J. Appl. Phys. 48, 050206 (2009).Google Scholar
23.Sommer, T., Kruse, T., and Roth, P.: Thermal stability of fullerenes: a shock tube study on the pyrolysis of C60 and C70. J. Phys. B 29, 4955 (1996).Google Scholar
24.Pont, S., Foglia, F., Higgins, A.M., Durrant, J.R., and Cabral, J.T.: Stability of polymer:PCBM thin films under competitive illumination and thermal stress. Adv. Funct. Mater. 28, 1802520 (2018).Google Scholar
25.Konstantinou, I.K., and Albanis, T.A.: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal., B 49, 1 (2004).Google Scholar
26.Chen, Y., Yang, S., Wang, K., and Lou, L.: Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol., A 172, 47 (2005).Google Scholar
27.Zhang, Y., Zhang, N., Tang, Z.-R., and Xu, Y.-J.: Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 4, 1820 (2013).Google Scholar
28.Ghosh, S., Kouame, N.A., Remita, S., Ramos, L., Goubard, F., Aubert, P.-H., Dazzi, A., Deniset-Besseau, A., and Remita, H.: Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci. Rep. 5, srep18002 (2015).Google Scholar
29.Li, Y., Sun, S., Ma, M., Ouyang, Y., and Yan, W.: Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem. Eng. J. 142, 147 (2008).Google Scholar
30.Clarke, T.M., Ballantyne, A.M., Nelson, J., Bradley, D.D., and Durrant, J.R.: Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv. Funct. Mater 18, 4029 (2008).Google Scholar
31.Kim, Y., Nelson, J., Zhang, T., Cook, S., Durrant, J.R., Kim, H., Park, J., Shin, M., Nam, S., and Heeney, M.: Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer: fullerene solar cells. ACS Nano 3, 2557 (2009).Google Scholar
Supplementary material: File

Pornrungroj et al. supplementary material

Figures S1-S4

Download Pornrungroj et al. supplementary material(File)
File 1.6 MB