Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T10:55:20.606Z Has data issue: false hasContentIssue false

Optical response of finite-thickness ultrathin plasmonic films

Published online by Cambridge University Press:  15 August 2018

Igor V. Bondarev*
Affiliation:
Math & Physics Department, North Carolina Central University, Durham, NC 27707, USA
Hamze Mousavi
Affiliation:
Math & Physics Department, North Carolina Central University, Durham, NC 27707, USA
Vladimir M. Shalaev
Affiliation:
School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
*
Address all correspondence to Igor V. Bondarev at [email protected]
Get access

Abstract

We show that the optical response of ultrathin metallic films of finite lateral size and thickness can feature peculiar magneto-optical effects resulting from the spatial confinement of the electron motion. In particular, the frequency dependence of the magnetic permeability of the film exhibits a sharp resonance structure shifting to the red as the film aspect ratio increases. The films can also be negatively refractive in the IR frequency range under proper tuning. We show that these magneto-optical properties can be controlled by adjusting the film chemical composition, plasmonic material quality, the aspect ratio, and the surroundings of the film.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Huang, J.-S., Callegari, V., Geisler, P., Brüning, C., Kern, J., Prangsma, J.C., Wu, X., Feichtner, T., Ziegler, J., Weinmann, P., Kamp, M., Forchel, A., Biagioni, P., Sennhauser, U., and Hecht, B.: Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010).Google Scholar
2.Reddy, H., Guler, U., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Temperature-dependent optical properties of gold thin films. Opt. Mater. Express 6, 2776 (2016).Google Scholar
3.Shah, D., Reddy, H., Kinsey, N., Shalaev, V.M., and Boltasseva, A.: Optical properties of plasmonic ultrathin TiN films. Adv. Opt. Mater. 5, 1700065 (2017).Google Scholar
4.Shah, D., Catellani, A., Reddy, H., Kinsey, N., Shalaev, V., Boltasseva, A., and Calzolari, A.: Controlling the plasmonic properties of ultrathin TiN films at the atomic level. ACS Photonics 5, 2816 (2018).Google Scholar
5.Stauber, T., Santos, G.G., and Brey, L.: Plasmonics in topological insulators: spin-charge separation, the influence of the inversion layer, and phonon–plasmon coupling. ACS Photonics 4, 2978 (2017).Google Scholar
6.David, C. and Christensen, J.: Extraordinary optical transmission through nonlocal holey metal films. Appl. Phys. Lett. 110, 261110 (2017).Google Scholar
7.Polischuk, O.V., Melnikova, V.S., and Popov, V.V.: Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface. Appl. Phys. Lett. 109, 131101 (2016).Google Scholar
8.Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., de Abajo, F.G., Pruneri, V., and Altug, H.: Mid-infrared plasmonic biosensing with graphene. Science 349, 165 (2015).Google Scholar
9.Yoxall, E., Schnell, M., Nikitin, A.Y., Txoperena, O., Woessner, A., Lundeberg, M.B., Casanova, F., Hueso, L.E., Koppens, F.H.L., and Hillenbrand, R.: Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674 (2015).Google Scholar
10.Dai, S., Ma, Q., Liu, M.K., Andersen, T., Fei, Z., Goldflam, M.D., Wagner, M., Watanabe, K., Taniguchi, T., Thiemens, M., Keilmann, F., Janssen, G.C.A.M., Zhu, S.-E., Herrero, P.J., Fogler, M.M., and Basov, D.N.: Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682 (2015).Google Scholar
11.Manjavacas, A. and García de Abajo, F.J.: Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 5, 3548 (2014).Google Scholar
12.Koppens, F.H.L., Mueller, T., Avouris, Ph, Ferrari, A.C., Vitiello, M.S., and Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).Google Scholar
13.David, C. and García de Abajo, F.J.: Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8, 9558 (2014).Google Scholar
14.Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Planar photonics with metasurfaces. Science 339, 1232009 (2013).Google Scholar
15.David, C., Mortensen, N.A., and Christensen, J.: Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects. Sci. Rep. 3, 2526 (2013).Google Scholar
16.Bondarev, I.V. and Shalaev, V.M.: Universal features of the optical properties of ultrathin plasmonic films. Opt. Mater. Express 7, 3731 (2017).Google Scholar
17.Bondarev, I.V. and Shalaev, V.M.: Quantum electrodynamics of optical metasurfaces. In 2018 International Applied Computational Electromagnetics Society Symposium (ACES), 1–2.Google Scholar
18.Pines, D. and Bohm, D.: A collective description of electron interactions. II. Collective vs individual particle aspects of the interactions. Phys. Rev. 92, 609 (1952).Google Scholar
19.Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).Google Scholar
20.Keldysh, L.V.: Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658 (1980).Google Scholar
21.Rytova, N.S.: Screened potential of a point charge in a thin film. Mosc. Univ. Phys. Bull. 3, 30 (1967).Google Scholar
22.Davies, J.H.: Physics of Low-Dimensional Semiconductors (Cambridge University, New York, 1998).Google Scholar
23.Basov, D.N., Fogler, M.M., Lanzara, A., Wang, F., and Zhang, Y.: Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959 (2014).Google Scholar
24.Landau, L.D. and Lifshitz, E.M.: Electrodynamics of Continuous Media, 2nd ed. (Pergamon, NY, 1984).Google Scholar
25.Agranovich, V.M. and Gartstein, Yu. N.: Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability. Metamaterials 3, 1 (2009).Google Scholar
26.Jackson, J.D.: Classical Electrodynamics (Wiley, New York, 1975).Google Scholar
27.Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1, 41 (2007).Google Scholar
28.Depine, R.A. and Lakhtakia, A.A.: A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microw. Opt. Technol. Lett. 41, 315 (2004).Google Scholar
29.Forcella, D., Prada, C., and Carminati, R.: Causality, nonlocality, and negative refraction. Phys. Rev. Lett. 118, 134301 (2017).Google Scholar