Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T10:49:30.723Z Has data issue: false hasContentIssue false

One-pot solvothermal preparation of S-doped BiOBr microspheres for efficient visible-light induced photocatalysis

Published online by Cambridge University Press:  19 September 2013

Xia Li
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China; Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Guohua Jiang*
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China; Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Zhen Wei
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China; Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Xiaohong Wang
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China; Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Wenxing Chen
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China; Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Liang Shen
Affiliation:
College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
*
*Address all correspondence to Guohua Jiang at[email protected]
Get access

Abstract

The S-doped BiOBr composite microspheres were successfully prepared through one-pot solvothermal method. The as-prepared samples exhibit higher photocatalytic activity for the degradation of Rhodamine B and phenol under visible light irradiation, attributed to the improvement of the photo-absorption property and the narrow band gap due to the dopants of S element. The higher efficiency for photodegradation of organic pollutant endows this material with a bright perspective in purification of waste water under visible-light irradiation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tian, H., Gao, J., Lu, L., Zhao, D., Cheng, K., and Qiu, P.: Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environ. Sci. Technol. 46, 10364 (2012).Google Scholar
2.Gondal, M., Chang, X., Ali, M.A., Zain, H.Y., Zhou, Q., and Ji, G.: Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532 nm pulsed laser exposure. Appl. Catal. A 397, 192 (2011).CrossRefGoogle Scholar
3.Pandikumar, A., Murugesan, S., and Ramaraj, R.: Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity. ACS Appl. Mater. Interfaces 2, 1912 (2010).Google Scholar
4.Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., and Chen, W.: Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 4154 (2011).Google Scholar
5.Hameda, T., Bayraktar, E., Mehmetoğlu, U., and Mehmetoğlu, T.: The biodegradation of benzene, toluene and phenol in a two phase system. Biochem. Eng. J. 19, 137 (2004).Google Scholar
6.Sun, Z., Kim, J., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y., and Dou, S.: Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314 (2011).CrossRefGoogle ScholarPubMed
7.Jiang, G., Zheng, X., Wang, Y., Li, T., and Sun, X.: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol. 207, 465 (2011).Google Scholar
8.Hoffmann, M., Martin, S., Choi, W., and Bahnemann, D.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
9.Jiang, G., Wang, X., Wei, Z., Li, X., Xi, X., Hu, R., Tang, B., Wang, R., Wang, S., Wang, T., and Chen, W.: Photocatalytic property of hierarchical structure based on Fe-doped BiOBr hollow microspheres. J. Mater. Chem. A 1, 2406 (2013).Google Scholar
10.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
11.Wang, S., Wang, T., Chen, W., and Hori, T.: Phase-selectivity photocatalysis: a new approach in organic pollutants' photodecomposition by nanovoid core(TiO2)/shell(SiO2) nanoparticles. Chem. Commun. 32, 3756 (2008).Google Scholar
12.Jiang, G., Wang, R., Jin, H., Wang, Y., Sun, X., Wang, S., and Wang, T.: Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technol. 212, 284 (2011).Google Scholar
13.Jiang, G., Wang, X., Zhou, Y., Wang, R., Hu, R., Xi, X., and Chen, W.: Hollow TiO2 nanocages with rubik-like structure for high-performance photocatalysts. Mater. Lett. 89, 59 (2012).Google Scholar
14.Guo, W., Zhang, F., Lin, C., and Wang, L.: Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 24, 4761 (2012).CrossRefGoogle ScholarPubMed
15.Wang, E., He, T., Zhao, L., Chen, Y., and Cao, Y.: Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J. Mater. Chem. 21, 144 (2011).Google Scholar
16.Ghicov, A., Schmidt, B., Kunze, J., and Schmuki, P.: Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem. Phys. Lett. 433, 323 (2007).Google Scholar
17.Wu, D., Long, M., Cai, W., Chen, C., and Wu, Y.: Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity. J. Alloys Compd. 502, 289 (2010).CrossRefGoogle Scholar
18.Su, W., Wang, J., Huang, Y., Wang, W., Wu, L., Wang, X., and Liu, P.: Synthesis and catalytic performances of a novel photocatalyst BiOF. Scripta Mater. 62, 345 (2010).Google Scholar
19.Zhang, X., Ai, Z., Jia, F., and Zhang, L.: Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747 (2008).Google Scholar
20.Xia, J., Yin, S., Li, H., Xu, H., Xu, L., and Xu, Y.: Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans. 40, 5249 (2011).CrossRefGoogle Scholar
21.Xu, J., Meng, W., Zhang, Y., Li, L., and Guo, C.: Simple solvothermal routes to synthesize 3D BiOBrxI1−x microspheres and their visible-light-induced photocatalytic properties. Ind. Eng. Chem. Res. 50, 6688 (2011).Google Scholar
22.Cheng, H., Huang, B., Wang, Z., Qin, X., Zhang, X., and Dai, Y.: Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway. Appl. Catal. B 107, 355 (2011).Google Scholar
23.Fang, Y., Huang, Y., Yang, J., Wang, P., and Cheng, G.: Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water. Environ. Sci. Technol. 45, 1593 (2011).Google Scholar
24.Feng, Y., Li, L., Li, J., Wang, J., and Liu, L.: Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. J. Hazard. Mater. 192, 538 (2011).CrossRefGoogle ScholarPubMed
25.Song, S., Gao, W., Wang, X., Li, X., Liu, D., Xing, Y., and Zhang, H.: Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Trans. 41, 10472 (2012).CrossRefGoogle ScholarPubMed
26.Cheng, H., Huang, B., Wang, P., Wang, Z., Lou, Z., Wang, J., Qin, X., Zhang, X., and Dai, Y.: In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 47, 7054 (2011).Google Scholar
27.Wang, R., Jiang, G., Wang, X., Hu, R., Xi, X., Bao, S., Zhou, Y., Tong, T., Wang, S., Wang, T., and Chen, W.: Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Powder Technol. 228, 258 (2012).Google Scholar
28.Jiang, G., Wang, R., Wang, X., Xi, X., Hu, R., Zhou, Y., Wang, S., Wang, T., and Chen, W.: Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl. Mater. Interfaces 4, 4440 (2012).Google Scholar
29.Fu, J., Tian, Y., Chang, B., Xi, F., and Dong, X.: BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J. Mater. Chem. 22, 21159 (2012).Google Scholar
30.Ye, L., Liu, J., Gong, C., Tian, L., Peng, T., and Zan, L.: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z scheme bridge. ACS Catal. 2, 1677 (2012).Google Scholar
31.Kong, L., Jiang, Z., Lai, H., Nicholls, R., Xiao, T., Jones, M., and Edwards, P.: Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts. J. Catal. 293, 116 (2012).Google Scholar
32.Guo, W., Shen, Y., Wu, L., Gao, Y., and Ma, T.: Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. J. Phys. Chem. C 115, 21494 (2011).Google Scholar
33.Sanaa, S., Uvarov, I., Fronton, S., Popov, I., and Sasson, Y.: A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J. Phys. Chem. C 116, 11004 (2012).Google Scholar
34.Kong, L., Jiang, Z., Xiao, T., Lu, L., Jones, M., and Edwards, P.: Exceptional visible-light-driven photocatalytic activity over BiOBr-ZnFe2O4 heterojunctions. Chem. Commun. 47, 5512 (2011).CrossRefGoogle ScholarPubMed
35.Shan, Z., Wang, W., Lin, X., Ding, H., and Huang, F.: Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br. J. Solid State Chem. 181, 1361 (2008).Google Scholar
36.Wei, Z., Jiang, G., Shen, L., Li, X., Wang, X., and Chen, W.: Preparation of Mn-dopped BiOBr Microspheres for Efficient Visible-Light Induced Photocatalysis. MRS Commun. DOI: 10.1557/mrc.2013.29 (2013).Google Scholar
37.Liu, G., Yang, H.G., Wang, X., Cheng, L., Pan, J., (Max) Lu, G. Q., and Cheng, H.-M.: Visible light responsive nitrogen doped anatase TiO2 sheets with {001} facets derived from TiN. J. Am. Chem. Soc. 131, 12868 (2009).Google Scholar
38.Chen, X. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).Google Scholar
39.Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., and Mitsui, T.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 265, 115 (2004).CrossRefGoogle Scholar
40.Bidaye, P.P., Khushalani, D., and Fernandes, J.B.: A simple method for synthesis of S-doped TiO2 of high photocatalytic activity. Catal. Lett. 134, 169 (2010).Google Scholar
41.Zhao, Z., Sun, Z., Zhao, H., Zheng, M., Du, P., Zhao, J., and Fan, H.: Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J. Mater. Chem. 22, 21965 (2012).Google Scholar
42.Zhang, K., Liang, J., Wang, S., Liu, J., Ren, K., Zheng, X., Luo, H., Peng, Y., Zou, X., Bo, X., Li, J., and Yu, X.: BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst. Growth Des. 12, 793 (2012).Google Scholar
43.Chen, L., Yin, S.-F., and Luo, S.-L.: Bi2O2CO3/BiOI photocatalysts with heterojunctions highly effcient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 51, 6760 (2012).Google Scholar
44.Wang, W., Wang, D., Qu, W., Lu, L., and Xu, A.: Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 37, 19893 (2012).Google Scholar
45.Wang, F., Valentin, C.D., and Pacchioni, G.: Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J. Phys. Chem. C 116, 8901 (2012).Google Scholar
46.Czoska, A.M., Livraghi, S., Chiesa, M., Giamello, E., Agnoli, S., Granozzi, G., Finazzi, E., Valentin, C.D., and Pacchioni, G.: The nature of defects in fluorine-doped TiO2. J. Phys. Chem. C 112, 8951 (2008).CrossRefGoogle Scholar
Supplementary material: File

Li Supplementary Materials

Supplementary Materials

Download Li Supplementary Materials(File)
File 19.2 MB