Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T10:32:17.119Z Has data issue: false hasContentIssue false

Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing

Published online by Cambridge University Press:  14 June 2018

D. R. Peng
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
X. C. Zhong*
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
J. H. Huang
Affiliation:
Baotou Research Institute of Rare Earths, Baotou 014030, China
H. Zhang
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Y. L. Huang
Affiliation:
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
X. T. Dong
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
D. L. Jiao
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Z. W. Liu
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
R. V. Ramanujan
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
*
Address all correspondence to X. C. Zhong at [email protected]
Get access

Abstract

We report on a novel processing route to prepare La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Cu bulk composites by low-temperature hot pressing. With increasing copper content, the compressive strength of the composites first decrease and then increase owing to the buffering effect of copper, but the magnetocaloric effect reduces to some extent. Copper addition improves the thermal conductivity of the composites, which compensates for the decrease in thermal conductivity due to porosity. A relatively large entropy change of 5.75–7.19 J/(kg K) at 2 T near the Curie temperature (249 K), good thermal conductivity of 7.51–15.55 W/(m·K), and improved compressive strength of 151.1–248.0 MPa make these composites attractive magnetic refrigeration materials.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yuan, Y., Wu, Y., Tong, X., Zhang, H., Wang, H., Liu, X.J., Ma, L., Suo, H.L., and Lu, Z.P.: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).Google Scholar
2.Tegus, O., Brück, E., Buschow, K.H.J., and de Boer, F.R.: Transition-metal-based magnetic refrigerants for room temperature applications. Nature 415, 150 (2002).Google Scholar
3.Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., and Conde, A.: Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 93, 112 (2018).Google Scholar
4.Zhang, H., Liu, J., Zhang, M.X., Shao, Y.Y., Li, Y., and Yan, A.R.: LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing. Scr. Mater. 120, 58 (2016).Google Scholar
5.Fu, S., Long, Y., Sun, Y.Y., and Hu, J.: Microstructural evolution and phase transition dependent on annealing temperature and carbon content for LaFe11.5Si1.5Cx compounds prepared by arc-melting. Intermetallics 39, 79 (2013).Google Scholar
6.Bao, B., Long, Y., Fu, B., Wang, C.L., Ye, R.C., Chang, Y.Q., Zhao, J.L., and Shen, J.: The study on the microstructure and the magnetocaloric effects in LaFe10.8Co0.7Si1.5C0.2 compound at different annealing times. J. Appl. Phys. 107, 09A905 (2010).Google Scholar
7.Shao, Y.Y., Zhang, M.X., Luo, H.B., Yan, A.R., and Liu, J.: Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys. Appl. Phys. Lett. 107, 152403 (2015).Google Scholar
8.Yen, N.H., Thanh, P.T., and Dan, N.H.: Influence of composition on phase formation and magnetocaloric effect of La-Fe-Co-Si alloys prepared by melt-spinning method. J. Electron. Mater. 45, 4288 (2016).Google Scholar
9.Hu, F.X., Gao, J., Qian, X.L., Ilyn, M., Tishin, A.M., Sun, J.R., and Shen, B.G.: Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1−xCox)11.9Si1.1. J. Appl. Phys. 97, 10M303 (2005).Google Scholar
10.Chen, Y.F., Wang, F., Shen, B.G., Hu, F.X., Sun, J.R., Wang, G.J., and Cheng, Z.H.: Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds. J. Phys: Condens. Matter 15, L161 (2003).Google Scholar
11.Zhang, H., Long, Y., Cao, Q., Mudryk, Y., Zou, M., Gschneidner, K.A. Jr., and Pecharsky, V.K.: Microstructure and magnetocaloric effect in cast LaFe11.5Si1.5Bx (x = 0.5, 1.0). J. Magn. Magn. Mater. 322, 1710 (2010).Google Scholar
12.Liu, J., Moore, J.D., Skokov, K.P., Krautz, M., Löwe, K., Barcza, A., Katter, M., and Gutfleisch, O.: Exploring La(Fe,Si)13-based magnetic refrigerants towards application. Scr. Mater. 67, 584 (2012)..Google Scholar
13.Zhang, H., Sun, Y.J., Niu, E., Hu, F.X., Sun, J.R., and Shen, B.G.: Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe,Si)13-based magnetic refrigeration materials. Appl. Phys. Lett. 104, 062407 (2014).Google Scholar
14.Krautz, M., Funk, A., Skokov, K.P., Gottschall, T., Eckert, J., Gutfleisch, O., and Waske, A.: A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous. Scr. Mater. 95, 50 (2015).Google Scholar
15.Dong, X.T., Zhong, X.C., Peng, D.R., Huang, J.H., Zhang, H., Jiao, D.L., Liu, Z.W., and Ramanujan, R.V.: La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing. J. Alloys Compd. 737, 568 (2018).Google Scholar
16.Skokov, K.P., Yu Karpenkov, D., Kuz'min, M.D., Radulov, I.A., Gottschall, T., Kaeswurm, B., Fries, M., and Gutfleisch, O.: Heat exchangers made of polymer-bonded La(Fe,Si)13. J. Appl. Phys. 115, 17A941 (2014).Google Scholar
17.Xia, W., Huang, J.H., Sun, N.K., Liu, C.L., Ou, Z.Q., and Song, L.: Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8. J. Alloys Compd. 635, 124 (2015).Google Scholar
18.Pulko, B., Tušek, J., Moore, J.D., Weise, B., Skokov, K., Mityashkin, O., Kitanovski, A., Favero, C., Fajfar, P., Gutfleisch, O., Waske, A., and Poredoš, A.: Epoxy-bonded La-Fe-Co-Si magnetocaloric plates. J. Magn. Magn. Mater. 375, 65 (2015).Google Scholar
19.Liu, J., Zhang, M.X., Shao, Y.Y., and Yan, A.R.: LaFe11.6Si1.4/Cu magnetocaloric composites prepared by hot pressing. IEEE Trans. Magn. 51, 2501502 (2015).Google Scholar
20.Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., and Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545 (2009).Google Scholar
21.Martienssen, W. and Warlimont, H.: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg, 2005) p. 45158.Google Scholar
22.Cao, M.S.: Physical Metallurgy Basis (Metallurgical Industry Press, Beijing, China, 1985).Google Scholar
23.Liu, J., Krautz, M., Skokov, K., Woodcock, T.G., and Gutfleisch, O.: Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys. Acta Mater. 59, 3602 (2011).Google Scholar
24.Löwe, K., Liu, J., Skokov, K., Moore, J.D., Sepehri-Amin, H., Hono, K., Katter, M., and Gutfleisch, O.: The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13. Acta Mater. 60, 4268 (2012).Google Scholar
25.Lyubina, J., Schafer, R., Martin, N., Schultz, L., and Gutfleisch, O.: Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735 (2010).Google Scholar
26.Turcaud, J.A., Morrison, K., Berenov, A., Alford, N.M., Sandeman, K.G., and Cohen, L.F.: Microstructural control and tuning of thermal conductivity in La0.67Ca0.33MnO3±δ. Scripta Mater. 68, 510 (2013).Google Scholar
27.Lyubina, J., Hannemann, U., Cohen, L.F., and Ryan, M.P.: Novel La(Fe,Si)13/Cu composites for magnetic cooling. Adv. Energy Mater. 2, 1323 (2012).Google Scholar
28.Banerjee, S.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964).Google Scholar
29.Liu, X.B. and Altounian, Z.: Effect of Co content on magnetic entropy change and structure of La(Fe1−xCox)11.4Si1.6. J. Magn. Magn. Mater. 264, 209 (2003).Google Scholar
30.Radulov, I.A., Skokov, K.P., Karpenkov, D.Y., Gottschall, T., and Gutfleisch, O.: On the preparation of La(Fe,Mn,Si)13Hx polymer-composites with optimized magnetocaloric properties. J. Magn. Magn. Mater. 396, 228 (2015).Google Scholar
31.Hu, F.X., Chen, L., Wang, J., Bao, L.F., Sun, J.R., and Shen, B.G.: Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first-order systems. Appl. Phys. Lett. 100, 072403 (2012).Google Scholar
32.Zeng, Q., Baker, I., McCreary, V., and Yan, Z.C.: Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders. J. Magn. Magn. Mater. 318, 28 (2007).Google Scholar
33.Gschneidner, K.A. Jr., Pecharsky, V.K., and Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005).Google Scholar
34.Niu, X.J., Gschneidner, K.A. Jr., Pecharsky, A.O., and Pecharsky, V.K.: Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys. J. Magn. Magn. Mater. 234, 193 (2001).Google Scholar
35.Zhang, Y.Q. and Zhang, Z.D.: Giant magnetoresistance and magnetocaloric effects of the Mn1.82V0.18Sb compound. J. Alloys Compd. 365, 35 (2004).Google Scholar
36.Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., and Zhang, X.X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 78, 3675 (2001).Google Scholar
37.Bingham, N.S., Phan, M.H., Srikanth, H., Torija, M.A., and Leighton, C.: Magnetocaloric effect and refrigerant capacity in charge-ordered manganites. J. Appl. Phys. 106, 023909 (2009).Google Scholar
38.Yu, P., Zhang, N.Z., Cui, Y.T., Wu, Z.M., Wen, L., Zeng, Z.Y., and Xia, L.: Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition. J. Non-Crystall. Solids 434, 36 (2016).Google Scholar