Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T06:33:49.688Z Has data issue: false hasContentIssue false

Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis

Published online by Cambridge University Press:  10 November 2016

Wen-Xiang Tang
Affiliation:
Nanomaterials Science Laboratory, Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
Pu-Xian Gao*
Affiliation:
Nanomaterials Science Laboratory, Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
*
Address all correspondence to Pu-Xian Gao at [email protected]
Get access

Abstract

Nanostructured cerium oxide (CeO2) with outstanding physical and chemical properties has attracted extensive interests over the past few decades in environment and energy-related applications. With controllable synthesis of nanostructured CeO2, much more features were technologically brought out from defect chemistry to structure-derived effects. This review highlights recent progress on the synthesis and characterization of nanostructured ceria-based materials as well as the traditional and new applications. Specifically, several typical applications based on the desired ceria nanostructures are focused to showcase the importance of nanostructure-derived effects. Moreover, some challenges and perspectives on the nanostructured ceria are presented, such as defects controlling and retainment, scale-up fabrication, and monolithic devices. Hopefully, this review can provide an improved understanding of nanostructured CeO2 and offer new opportunities to promote the further research and applications in the future.

Type
Functional Oxides Prospective Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, Y. and Shen, W.: Morphology-dependent nanocatalysts: rod-shaped oxides. Chem. Soc. Rev. 43, 1543 (2014).Google Scholar
2. Zhou, K., Wang, X., Sun, X., Peng, Q., and Li, Y.: Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 229, 206 (2005).Google Scholar
3. Mai, H.-X., Sun, L.-D., Zhang, Y.-W., Si, R., Feng, W., Zhang, H.-P., Liu, H.-C., and Yan, C.-H.: Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 109, 24380 (2005).Google Scholar
4. Tana, , Zhang, M., Li, J., Li, H., Li, Y., and Shen, W.: Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal. Today 148, 179 (2009).CrossRefGoogle Scholar
5. Wu, Z., Li, M., and Overbury, S.H.: On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 285, 61 (2012).Google Scholar
6. Tasker, P.: The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys. 12, 4977 (1979).Google Scholar
7. Conesa, J.: Computer modeling of surfaces and defects on cerium dioxide. Surf. Sci. 339, 337 (1995).Google Scholar
8. Yang, S. and Gao, L.: Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330 (2006).Google Scholar
9. Zhang, J., Kumagai, H., Yamamura, K., Ohara, S., Takami, S., Morikawa, A., Shinjoh, H., Kaneko, K., Adschiri, T., and Suda, A.: Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. Nano Lett. 11, 361 (2011).Google Scholar
10. Wang, Z.L. and Feng, X.: Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B 107, 13563 (2003).CrossRefGoogle Scholar
11. Kaneko, K., Inoke, K., Freitag, B., Hungria, A.B., Midgley, P.A., Hansen, T.W., Zhang, J., Ohara, S., and Adschiri, T.: Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett. 7, 421 (2007).Google Scholar
12. Lin, M., Fu, Z.Y., Tan, H.R., Tan, J.P.Y., Ng, S.C., and Teo, E.: Hydrothermal synthesis of CeO2 nanocrystals: Ostwald ripening or oriented attachment?. Cryst. Growth Des. 12, 3296 (2012).Google Scholar
13. Younis, A., Chu, D., Kaneti, Y.V., and Li, S.: Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale 8, 378 (2016).CrossRefGoogle ScholarPubMed
14. Wang, D., Kang, Y., Doan-Nguyen, V., Chen, J., Küngas, R., Wieder, N.L., Bakhmutsky, K., Gorte, R.J., and Murray, C.B.: Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew. Chem. Int. Ed. 50, 4378 (2011).Google Scholar
15. Zhou, F., Zhao, X., Xu, H., and Yuan, C.: CeO2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study. J. Phys. Chem. C 111, 1651 (2007).Google Scholar
16. Phokha, S., Pinitsoontorn, S., Chirawatkul, P., Poo-arporn, Y., and Maensiri, S.: Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res. Lett. 7, 1 (2012).Google Scholar
17. Wang, Z., Wang, Q., Liao, Y.-C., Shen, G.-L., Liu, H.-D., and Chen, Y.-F.: A novel method to synthesize homogeneous and mono-dispersible CeO2 nanospheres: two-step hydrothermal process. J. Nanopart. Res. 13, 4969 (2011).Google Scholar
18. Liang, X., Xiao, J., Chen, B., and Li, Y.: Catalytically stable and active CeO2 mesoporous spheres. Inorg. Chem. 49, 8188 (2010).Google Scholar
19. Munoz, F.F., Acuña, L.M., Albornoz, C., Leyva, A.G., Baker, R., and Fuentes, R.O.: Redox properties of nanostructured lanthanide-doped ceria spheres prepared by microwave assisted hydrothermal homogeneous co-precipitation. Nanoscale 7, 271 (2015).Google Scholar
20. Feng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle, T.X., Yang, Y., Ding, Y., and Wang, X.: Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 312, 1504 (2006).CrossRefGoogle ScholarPubMed
21. Chen, A., Chen, Y., and Chen, Z.: Three-dimensional ordered CeO2 Hollow spheres (3DOHSs-CeO2) from Polymethylmethacrylate/CeO2 core/shell microsphere colloidal crystals. J. Inorg. Organometal. Polym. Mater. 26, 69 (2016).Google Scholar
22. Chen, Y. and Lu, J.: Facile fabrication of porous hollow CeO2 microspheres using polystyrene spheres as templates. J. Porous Mater. 19, 289 (2012).Google Scholar
23. Strandwitz, N.C. and Stucky, G.D.: Hollow microporous cerium oxide spheres templated by colloidal silica. Chem. Mater. 21, 4577 (2009).Google Scholar
24. Li, X., Chen, F., Lu, X., Ni, C., Zhao, X., and Chen, Z.: Layer-by-layer synthesis of hollow spherical CeO2 templated by carbon spheres. J. Porous Mater. 17, 297 (2010).Google Scholar
25. Qi, J., Zhao, K., Li, G., Gao, Y., Zhao, H., Yu, R., and Tang, Z.: Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 6, 4072 (2014).Google Scholar
26. Xu, P., Yu, R., Ren, H., Zong, L., Chen, J., and Xing, X.: Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres. Chem. Sci. 5, 4221 (2014).Google Scholar
27. Cao, C.-Y., Cui, Z.-M., Chen, C.-Q., Song, W.-G., and Cai, W.: Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C 114, 9865 (2010).Google Scholar
28. Han, L., Liu, R., Li, C., Li, H., Li, C., Zhang, G., and Yao, J.: Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. J. Mater. Chem. 22, 17079 (2012).Google Scholar
29. Liu, X., Yang, H., Han, L., Liu, W., Zhang, C., Zhang, X., Wang, S., and Yang, Y.: Mesoporous-shelled CeO2 hollow nanospheres synthesized by a one-pot hydrothermal route and their catalytic performance. CrystEngComm 15, 7769 (2013).Google Scholar
30. Yang, Z., Han, D., Ma, D., Liang, H., Liu, L., and Yang, Y.: Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra. Cryst. Growth Des. 10, 291 (2009).Google Scholar
31. Ji, P., Zhang, J., Chen, F., and Anpo, M.: Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica: formation, characterization and photocatalytic activity. J. Phys. Chem. C 112, 17809 (2008).Google Scholar
32. Voskanyan, A.A., Chan, K.-Y., and Li, C.-Y.V.: Colloidal solution combustion synthesis: towards mass production of crystalline uniform mesoporous CeO2 catalyst with tunable porosity. Chem. Mater. 28, 27682775 (2016).Google Scholar
33. Zhang, J., Jin, Y., Li, C., Shen, Y., Han, L., Hu, Z., Di, X., and Liu, Z.: Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Appl. Catal. B: Environ. 91, 11 (2009).Google Scholar
34. Tang, W., Li, W., Shan, X., Wu, X., and Chen, Y.: Template-free synthesis of hierarchical layer-stacking CeO2 nanostructure with enhanced catalytic oxidation activity. Mater. Lett. 140, 95 (2015).Google Scholar
35. Yu, R., Yan, L., Zheng, P., Chen, J., and Xing, X.: Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route. J. Phys. Chem. C 112, 19896 (2008).Google Scholar
36. Wei, J., Yang, Z., and Yang, Y.: Fabrication of three dimensional CeO2 hierarchical structures: precursor template synthesis, formation mechanism and properties. CrystEngComm 13, 2418 (2011).Google Scholar
37. Li, J., Lu, G., Li, H., Wang, Y., Guo, Y., and Guo, Y.: Facile synthesis of 3D flowerlike CeO2 microspheres under mild condition with high catalytic performance for CO oxidation. J. Colloid Interface Sci. 360, 93 (2011).Google Scholar
38. He, Y., Liang, X., and Chen, B.: Globin-like mesoporous CeO2: a CO-assisted synthesis based on carbonate hydroxide precursors and its applications in low temperature CO oxidation. Nano Res. 8, 1269 (2015).Google Scholar
39. Li, P., Zhou, Y., Zhao, Z., Xu, Q., Wang, X., Xiao, M., and Zou, Z.: Hexahedron prism-anchored octahedronal CeO2: crystal facet-based homojunction promoting efficient solar fuel synthesis. J. Am. Chem. Soc. 137, 9547 (2015).CrossRefGoogle ScholarPubMed
40. Guo, Y., Ren, Z., Xiao, W., Liu, C., Sharma, H., Gao, H., Mhadeshwar, A., and Gao, P.-X.: Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy 2, 873 (2013).Google Scholar
41. Ren, Z., Botu, V., Wang, S., Meng, Y., Song, W., Guo, Y., Ramprasad, R., Suib, S.L., and Gao, P.X.: Monolithically integrated spinel MxCo3−xO4 (M= Co, Ni, Zn) nanoarray catalysts: scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation. Angew. Chem. Int. Ed. 53, 7223 (2014).Google Scholar
42. Guo, Y., Liu, G., Ren, Z., Piyadasa, A., and Gao, P.-X.: Single crystalline brookite titanium dioxide nanorod arrays rooted on ceramic monoliths: a hybrid nanocatalyst support with ultra-high surface area and thermal stability. CrystEngComm 15, 8345 (2013).CrossRefGoogle Scholar
43. Xiao, W., Guo, Y., Ren, Z., Wrobel, G., Ren, Z., Lu, T., and Gao, P.-X.: Mechanical-agitation-assisted growth of large-scale and uniform ZnO nanorod arrays within 3D multichannel monolithic substrates. Cryst. Growth Des. 13, 3657 (2013).Google Scholar
44. Chen, S.-Y., Song, W., Lin, H.-J., Wang, S., Biswas, S., Mollahosseini, M., Kuo, C.-H., Gao, P.-X., and Suib, S.L.: Manganese oxide nano-array based monolithic catalysts: tunable morphology and high efficiency for CO oxidation. ACS Appl. Mater. Interfaces 8, 78347842 (2016).Google Scholar
45. Ren, Z., Wu, Z., Song, W., Xiao, W., Guo, Y., Ding, J., Suib, S.L., and Gao, P.-X.: Low temperature propane oxidation over Co3 O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl. Catal. B: Environ. 180, 150 (2016).Google Scholar
46. Wang, S., Ren, Z., Song, W., Guo, Y., Zhang, M., Suib, S.L., and Gao, P.-X.: ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature. Catal. Today 258, 549 (2015).Google Scholar
47. Guo, Y., Zhang, Z., Ren, Z., Gao, H., and Gao, P.-X.: Synthesis, characterization and CO oxidation of TiO2/(La, Sr) MnO3 composite nanorod array. Catal. Today 184, 178 (2012).Google Scholar
48. Wang, T., Zhang, L., Zhang, J., and Hua, G.: Synthesis and characterization of mesoporous CeO2 nanotube arrays. Microporous Mesoporous Mater. 171, 196 (2013).Google Scholar
49. Li, G.-R., Qu, D.-L., Yu, X.-L., and Tong, Y.-X.: Microstructural evolution of CeO2 from porous structures to clusters of nanosheet arrays assisted by gas bubbles via electrodeposition. Langmuir 24, 4254 (2008).Google Scholar
50. Lu, X.-h, Zheng, D.-z., Gan, J.-y., Liu, Z.-q., Liang, C.-l., Liu, P., and Tong, Y.-x: Porous CeO2 nanowires/nanowire arrays: electrochemical synthesis and application in water treatment. J. Mater. Chem. 20, 7118 (2010).CrossRefGoogle Scholar
51. Wu, Z., Li, M., Mullins, D.R., and Overbury, S.H.: Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption. ACS Catal. 2, 2224 (2012).Google Scholar
52. Mann, A.K.P., Wu, Z., Calaza, F.C., and Overbury, S.H.: Adsorption and reaction of acetaldehyde on shape-controlled CeO2 nanocrystals: elucidation of structure–function relationships. ACS Catal. 4, 2437 (2014).Google Scholar
53. Trovarelli, A.: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38, 439 (1996).Google Scholar
54. Rao, R., Yang, M., Li, C., Dong, H., Fang, S., and Zhang, A.: A facile synthesis for hierarchical porous CeO2 nanobundles and their superior catalytic performance for CO oxidation. J. Mater. Chem. A 3, 782 (2015).Google Scholar
55. Sun, Y., Liu, Q., Gao, S., Cheng, H., Lei, F., Sun, Z., Jiang, Y., Su, H., Wei, S., and Xie, Y.: Pits confined in ultrathin cerium (IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat. Commun. 4, 18 (2013).Google Scholar
56. Kang, Y., Sun, M., and Li, A.: Studies of the catalytic oxidation of CO over Ag/CeO2 catalyst. Catal. Lett. 142, 1498 (2012).Google Scholar
57. Kim, H.Y., Lee, H.M., and Henkelman, G.: CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 134, 1560 (2012).Google Scholar
58. Lee, Y., He, G., Akey, A.J., Si, R., Flytzani-Stephanopoulos, M., and Herman, I.P.: Raman analysis of mode softening in nanoparticle CeO2−δ and Au-CeO2−δ during CO oxidation. J. Am. Chem. Soc. 133, 12952 (2011).Google Scholar
59. Camellone, M.F., and Fabris, S.: Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 131, 10473 (2009).Google Scholar
60. Qi, J., Chen, J., Li, G., Li, S., Gao, Y., and Tang, Z.: Facile synthesis of core–shell Au@ CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ. Sci. 5, 8937 (2012).Google Scholar
61. He, B., Zhao, Q., Zeng, Z., Wang, X., and Han, S.: Effect of hydrothermal reaction time and calcination temperature on properties of Au@ CeO2 core–shell catalyst for CO oxidation at low temperature. J. Mater. Sci. 50, 6339 (2015).Google Scholar
62. Zhang, S., Li, X.-S., Chen, B., Zhu, X., Shi, C., and Zhu, A.-M.: CO oxidation activity at room temperature over Au/CeO2 catalysts: disclosure of induction period and humidity effect. ACS Catal. 4, 3481 (2014).CrossRefGoogle Scholar
63. Chen, S., Luo, L., Jiang, Z., and Huang, W.: Size-dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 5, 1653 (2015).Google Scholar
64. Zhou, Y., Lawrence, N.J., Wu, T.S., Liu, J., Kent, P., Soo, Y.L., and Cheung, C.L.: Pd/CeO2−x Nanorod catalysts for CO oxidation: insights into the origin of their regenerative ability at room temperature. ChemCatChem 6, 2937 (2014).Google Scholar
65. Wang, X., Liu, D., Li, J., Zhen, J., Wang, F., and Zhang, H.: γ-Al2O3 supported Pd@ CeO2 core@ shell nanospheres: salting-out assisted growth and self-assembly, and their catalytic performance in CO oxidation. Chem. Sci. 6, 2877 (2015).Google Scholar
66. Li, G., Li, L., Yuan, Y., Shi, J., Yuan, Y., Li, Y., Zhao, W., and Shi, J.: Highly efficient mesoporous Pd/CeO2 catalyst for low temperature CO oxidation especially under moisture condition. Appl. Catal. B: Environ. 158, 341 (2014).Google Scholar
67. Guo, H., He, Y., Wang, Y., Liu, L., Yang, X., Wang, S., Huang, Z., and Wei, Q.: Morphology-controlled synthesis of cage-bell Pd@ CeO2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO. J. Mater. Chem. A 1, 7494 (2013).Google Scholar
68. Wang, X., Liu, D., Song, S., and Zhang, H.: Pt@CeO2 multicore@ shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 135, 15864 (2013).Google Scholar
69. An, K., Alayoglu, S., Musselwhite, N., Plamthottam, S., Melaet, G.r.m, Lindeman, A.E., and Somorjai, G.A.: Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J. Am. Chem. Soc. 135, 16689 (2013).CrossRefGoogle ScholarPubMed
70. Meher, S.K., Cargnello, M., Troiani, H., Montini, T., Rao, G.R., and Fornasiero, P.: Alcohol induced ultra-fine dispersion of pt on tuned morphologies of CeO2 for CO oxidation. Appl. Catal. B: Environ. 130, 121 (2013).CrossRefGoogle Scholar
71. Ke, J., Zhu, W., Jiang, Y., Si, R., Wang, Y.-J., Li, S.-C., Jin, C., Liu, H., Song, W.-G., and Yan, C.-H.: Strong local coordination structure effects on subnanometer PtO×clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catalysis 5, 5164 (2015).CrossRefGoogle Scholar
72. Lee, S., Seo, J., and Jung, W.: Sintering-resistant Pt@ CeO2 nanoparticles for high-temperature oxidation catalysis. Nanoscale 8, 1021910228 (2016).Google Scholar
73. Xie, Q., Zhao, Y., Guo, H., Lu, A., Zhang, X., Wang, L., Chen, M.-S., and Peng, D.-L.: Facile preparation of well-dispersed CeO2–ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation. ACS Appl. Mater. Interfaces 6, 421 (2013).Google Scholar
74. Zhong, S.-L., Zhang, L.-F., Wang, L., Huang, W.-X., Fan, C.-M., and Xu, A.-W.: Uniform and Porous Ce1–x Znx O2−δ solid solution nanodisks: preparation and their CO oxidation activity. J. Phys. Chem. C 116, 13127 (2012).Google Scholar
75. Chen, S., Li, L., Hu, W., Huang, X., Li, Q., Xu, Y., Zuo, Y., and Li, G.: Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 7, 22999 (2015).Google Scholar
76. Yen, H., Seo, Y., Kaliaguine, S., and Kleitz, F.: Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. Angew. Chem. Int. Ed. 51, 12032 (2012).Google Scholar
77. Woods, M.P., Gawade, P., Tan, B., and Ozkan, U.S.: Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles. Appl. Catal. B: Environ. 97, 28 (2010).Google Scholar
78. Ayastuy, J.L., Gurbani, A., González-Marcos, M.a.P., and Gutiérrez-Ortiz:, M.A. Kinetics of carbon monoxide oxidation over CuO supported on nanosized CeO2 . Ind. Eng. Chem. Res. 48, 5633 (2009).Google Scholar
79. Jia, A.-P., Jiang, S.-Y., Lu, J.-Q., and Luo, M.-F.: Study of catalytic activity at the CuO−CeO2 interface for CO oxidation. J. Phys. Chem. C 114, 21605 (2010).Google Scholar
80. Qin, J., Lu, J., Cao, M., and Hu, C.: Synthesis of porous CuO–CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2, 2739 (2010).Google Scholar
81. Liu, Z., Wu, Z., Peng, X., Binder, A., Chai, S., and Dai, S.: Origin of active oxygen in a ternary CuOx/Co3O4–CeO2 catalyst for CO oxidation. J. Phys. Chem. C 118, 27870 (2014).CrossRefGoogle Scholar
82. Bao, T., Zhao, Z., Dai, Y., Lin, X., Jin, R., Wang, G., and Muhammad, T.: Supported Co3O4–CeO2 catalysts on modified activated carbon for CO preferential oxidation in H2-rich gases. Appl. Catal. B: Environ. 119, 62 (2012).Google Scholar
83. Binder, A.J., Toops, T.J., Unocic, R.R., Parks, J.E., and Dai, S.: Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem. Int. Ed. 54, 13263 (2015).Google Scholar
84. Zhang, X., Wei, J., Yang, H., Liu, X., Liu, W., Zhang, C., and Yang, Y.: One-pot synthesis of Mn-doped CeO2 nanospheres for CO oxidation. Eur. J. Inorg. Chem. 2013, 4443 (2013).Google Scholar
85. Luo, J.-Y., Meng, M., Yao, J.-S., Li, X.-G., Zha, Y.-Q., Wang, X., and Zhang, T.-Y.: One-step synthesis of nanostructured Pd-doped mixed oxides MOx–CeO2 (M= Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation. Appl. Catal. B: Environ. 87, 92 (2009).Google Scholar
86. Zou, Z.-Q., Meng, M., and Zha, Y.-Q.: Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx−CeO2 and Pd/MnOx−CeO2 Catalysts Used for CO and C3H8 oxidation. J. Phys. Chem. C 114, 468 (2009).Google Scholar
87. Venkataswamy, P., Rao, K.N., Jampaiah, D., and Reddy, B.M.: Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl. Catal. B: Environ. 162, 122 (2015).Google Scholar
88. Sasikala, R., Gupta, N., and Kulshreshtha, S.: Temperature-programmed reduction and CO oxidation studies over Ce–Sn mixed oxides. Catal. Lett. 71, 69 (2001).Google Scholar
89. Xiao, G., Li, S., Li, H., and Chen, L.: Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. Microporous Mesoporous Mater. 120, 426 (2009).Google Scholar
90. Ayastuy, J., Iglesias-González, A., and Gutiérrez-Ortiz, M.: Synthesis and characterization of low amount tin-doped ceria (CeXSn1− XO2− δ) for catalytic CO oxidation. Chem. Eng. J. 244, 372 (2014).Google Scholar
91. Elias, J.S., Artrith, N., Bugnet, M., Giordano, L., Botton, G.A., Kolpak, A.M., and Shao-Horn, Y.: Elucidating the nature of the active phase in copper/ceria catalysts for CO oxidation. ACS Catal. 6, 1675 (2016).Google Scholar
92. Wang, C.-H., and Lin, S.-S.: Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons. Appl. Catal. A: Gen. 268, 227 (2004).Google Scholar
93. Cargnello, M., Jaén, J.D., Garrido, J.H., Bakhmutsky, K., Montini, T., Gámez, J.C., Gorte, R., and Fornasiero, P.: Exceptional activity for methane combustion over modular Pd@ CeO2 subunits on functionalized Al2O3 . Science 337, 713 (2012).Google Scholar
94. Hu, Z., Liu, X., Meng, D., Guo, Y., Guo, Y., and Lu, G.: Effect of Ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 6, 2265 (2016).Google Scholar
95. Herrmann, J.-M., Hoang-Van, C., Dibansa, L., and Harivololona, R.: An in situ electrical conductivity study of a CeO2 aerogel supported palladium catalyst in correlation with the total oxidation of propane. J. Catal. 159, 361 (1996).Google Scholar
96. Azalim, S., Franco, M., Brahmi, R., Giraudon, J.-M., and Lamonier, J.-F.: Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts. J. Hazard. Mater. 188, 422 (2011).Google Scholar
97. Li, H., Lu, G., Dai, Q., Wang, Y., Guo, Y., and Guo, Y.: Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl. Catal. B: Environ. 102, 475 (2011).Google Scholar
98. Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J., and Shen, W.: MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B: Environ. 62, 265 (2006).Google Scholar
99. Liao, Y., Fu, M., Chen, L., Wu, J., Huang, B., and Ye, D.: Catalytic oxidation of toluene over nanorod-structured Mn–Ce mixed oxides. Catal. Today 216, 220 (2013).Google Scholar
100. Wang, Z., Shen, G., Li, J., Liu, H., Wang, Q., and Chen, Y.: Catalytic removal of benzene over CeO 2–MnO x composite oxides prepared by hydrothermal method. Appl. Catal. B: Environ. 138, 253 (2013).Google Scholar
101. Tang, W., Wu, X., Liu, G., Li, S., Li, D., Li, W., and Chen, Y.: Preparation of hierarchical layer-stacking Mn–Ce composite oxide for catalytic total oxidation of VOCs. J. Rare Earths 33, 62 (2015).Google Scholar
102. Delimaris, D. and Ioannides, T.: VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method. Appl. Catal. B: Environ. 89, 295 (2009).Google Scholar
103. Adam, F. and Thankappan, R.: Oxidation of benzene over bimetallic Cu–Ce incorporated rice husk silica catalysts. Chem. Eng. J. 160, 249 (2010).Google Scholar
104. Li, T.-Y., Chiang, S.-J., Liaw, B.-J., and Chen, Y.-Z.: Catalytic oxidation of benzene over CuO/Ce1−x MnxO2 catalysts. Appl. Catal. B: Environ. 103, 143 (2011).Google Scholar
105. Aranda, A., Aylón, E., Solsona, B., Murillo, R., Mastral, A.M., Sellick, D.R., Agouram, S., García, T., and Taylor, S.H.: High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chem. Commun. 48, 4704 (2012).CrossRefGoogle ScholarPubMed
106. Carabineiro, S., Chen, X., Konsolakis, M., Psarras, A., Tavares, P., Órfão, J., Pereira, M., and Figueiredo, J.: Catalytic oxidation of toluene on Ce–Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods. Catal. Today 244, 161 (2015).Google Scholar
107. Dickerson, R., Kondragunta, S., Stenchikov, G., Civerolo, K., Doddridge, B., and Holben, B.: The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278, 827 (1997).Google Scholar
108. Ammann, M., Kalberer, M., Jost, D., Tobler, L., Rössler, E., Piguet, D., Gäggeler, H., and Baltensperger, U.: Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 395, 157 (1998).Google Scholar
109. Muroyama, H., Hano, S., Matsui, T., and Eguchi, K.: Catalytic soot combustion over CeO2-based oxides. Catal. Today 153, 133 (2010).Google Scholar
110. Setiabudi, A., Chen, J., Mul, G., Makkee, M., and Moulijn, J.A.: CeO2 catalysed soot oxidation: the role of active oxygen to accelerate the oxidation conversion. Appl. Catal. B: Environ. 51, 9 (2004).Google Scholar
111. Aneggi, E., Divins, N.J., de Leitenburg, C., Llorca, J., and Trovarelli, A.: The formation of nanodomains of Ce6O11 in ceria catalyzed soot combustion. J. Catal. 312, 191 (2014).Google Scholar
112. Bueno-López, A.: Diesel soot combustion ceria catalysts. Appl. Catal. B: Environ. 146, 1 (2014).Google Scholar
113. Aneggi, E., Wiater, D., de Leitenburg, C., Llorca, J., and Trovarelli, A.: Shape-dependent activity of ceria in soot combustion. ACS Catal. 4, 172 (2013).Google Scholar
114. Daturi, M., Bion, N., Saussey, J., Lavalley, J.-C., Hedouin, C., Seguelong, T., and Blanchard, G.: Evidence of a lacunar mechanism for deNOx activity in ceria-based catalysts. Phys. Chem. Chem. Phys. 3, 252 (2001).Google Scholar
115. Haneda, M., Kintaichi, Y., and Hamada, H.: Surface reactivity of prereduced rare earth oxides with nitric oxide: new approach for NO decomposition. Phys. Chem. Chem. Phys. 4, 3146 (2002).Google Scholar
116. Fang, C., Zhang, D., Shi, L., Gao, R., Li, H., Ye, L., and Zhang, J.: Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3 . Catal. Sci. Technol. 3, 803 (2013).Google Scholar
117. Yao, X., Gao, F., Yu, Q., Qi, L., Tang, C., Dong, L., and Chen, Y.: NO reduction by CO over CuO–CeO2 catalysts: effect of preparation methods. Catal. Sci. Technol. 3, 1355 (2013).Google Scholar
118. Chen, L., Si, Z., Wu, X., and Weng, D.: DRIFT Study of CuO–CeO2–TiO2 mixed oxides for NOx reduction with NH3 at low temperatures. ACS Appl. Mater. Interfaces 6, 8134 (2014).Google Scholar
119. Maitarad, P., Han, J., Zhang, D., Shi, L., Namuangruk, S., and Rungrotmongkol, T.: Structure–activity relationships of NiO on CeO2 Nanorods for the selective catalytic reduction of NO with NH3: experimental and DFT studies. J. Phys. Chem. C 118, 9612 (2014).Google Scholar
120. Peng, Y., Li, J., Chen, L., Chen, J., Han, J., Zhang, H., and Han, W.: Alkali metal poisoning of a CeO2–WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study. Environ. Sci. Technol. 46, 2864 (2012).Google Scholar
121. Xiong, S., Liao, Y., Xiao, X., Dang, H., and Yang, S.: Novel effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over MnOx CeO2: mechanism and kinetic study. J. Phys. Chem. C 119, 4180 (2015).Google Scholar
122. Yang, S., Liao, Y., Xiong, S., Qi, F., Dang, H., Xiao, X., and Li, J.: N2 selectivity of NO reduction by NH3 over MnOx–CeO2: mechanism and key factors. J. Phys. Chem. C 118, 21500 (2014).Google Scholar
123. Jiang, D., Wang, W., Zhang, L., Zheng, Y., and Wang, Z.: Insights into the surface-defect dependence of Photoreactivity over CeO2 nanocrystals with well-defined crystal facets. ACS Catal. 5, 4851 (2015).Google Scholar
124. Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791 (2004).Google Scholar
125. Ormerod, R.M.: Solid oxide fuel cells. Chem. Soc. Rev. 32, 17 (2003).Google Scholar
126. Gorte, R.J., Park, S., Vohs, J.M., and Wang, C.: Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465 (2000).Google Scholar
127. Park, S., Vohs, J.M., and Gorte, R.J.: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 (2000).Google Scholar
128. Shin, T.H., Ida, S., and Ishihara, T.: Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 133, 19399 (2011).Google Scholar
129. Ma, Y., Wang, X., Li, S., Toprak, M.S., Zhu, B., and Muhammed, M.: Samarium-doped ceria nanowires: novel synthesis and application in low-temperature solid oxide fuel cells. Adv. Mater. 22, 1640 (2010).Google Scholar
130. He, H., Gorte, R.J., and Vohs, J.M.: Highly sulfur tolerant Cu-ceria anodes for SOFCs. Electrochem. Solid State Lett. 8, A279 (2005).Google Scholar
131. Adijanto, L., Sampath, A., Yu, A.S., Cargnello, M., Fornasiero, P., Gorte, R.J., and Vohs, J.M.: Synthesis and stability of Pd@ CeO2 core–shell catalyst films in solid oxide fuel cell anodes. ACS Catal. 3, 1801 (2013).Google Scholar
132. Korotcenkov, G.: Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1 (2007).Google Scholar
133. Fu, X., Wang, C., Yu, H., Wang, Y., and Wang, T.: Fast humidity sensors based on CeO2 nanowires. Nanotechnology 18, 145503 (2007).Google Scholar
134. Jasinski, P., Suzuki, T., and Anderson, H.U.: Nanocrystalline undoped ceria oxygen sensor. Sens. Actuators B: Chem. 95, 73 (2003).Google Scholar
135. Beie, H.-J., and Gnörich, A.: Oxygen gas sensors based on CeO2 thick and thin films. Sens. Actuators B: Chem. 4, 393 (1991).Google Scholar
136. Zhang, Z., Gao, H., Cai, W., Liu, C., Guo, Y., and Gao, P.-X.: In situ TPR removal: a generic method for fabricating tubular array devices with mechanical and structural soundness, and functional robustness on various substrates. J. Mater. Chem. 22, 23098 (2012).Google Scholar
137. Barreca, D., Gasparotto, A., Maccato, C., Maragno, C., and Tondello, E.: Toward the innovative synthesis of columnar CeO2 nanostructures. Langmuir 22, 8639 (2006).Google Scholar
138. Barreca, D., Gasparotto, A., Maccato, C., Maragno, C., Tondello, E., Comini, E., and Sberveglieri, G.: Columnar CeO2 nanostructures for sensor application. Nanotechnology 18, 125502 (2007).Google Scholar
139. Wang, L., Huang, H., Xiao, S., Cai, D., Liu, Y., Liu, B., Wang, D., Wang, C., Li, H., and Wang, Y.: Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@ cross-linked PANI with p–n heterojunctions. ACS Appl.Mater. Interfaces 6, 14131 (2014).Google Scholar
140. Montini, T., Melchionna, M., Monai, M., and Fornasiero, P.: Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987 (2016).Google Scholar
141. McCabe, R.W. and Trovarelli, A.: Forty years of catalysis by ceria: a success story. Appl. Catal. B: Environ. 197, 1 (2016).Google Scholar
142. Shuang, L., Xiaodong, W., Duan, W., and Rui, R.: Ceria-based catalysts for soot oxidation: a review. J. Rare Earths 33, 567 (2015).Google Scholar
143. Paier, J., Penschke, C., and Sauer, J.: Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem. Rev. 113, 3949 (2013).Google Scholar
144. Lawrence, N.J., Brewer, J.R., Wang, L., Wu, T.-S., Wells-Kingsbury, J., Ihrig, M.M., Wang, G., Soo, Y.-L., Mei, W.-N., and Cheung, C.L.: Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Lett. 11, 2666 (2011).Google Scholar
145. Cai, S., Zhang, D., Shi, L., Xu, J., Zhang, L., Huang, L., Li, H., and Zhang, J.: Porous Ni–Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts. Nanoscale 6, 7346 (2014).Google Scholar