Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T10:48:08.087Z Has data issue: false hasContentIssue false

Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4)

Published online by Cambridge University Press:  15 November 2013

Goran Rasic*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
Justin Schwartz
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
*
Address all correspondence to Goran Rasic at[email protected]
Get access

Abstract

Textured nickel ferrite (NFO, NiFe2O4) thin films were deposited at room temperature by chemical solution deposition onto c-plane sapphire substrates. A nanoimprint lithography technique using a polydimethylsiloxane stamp was used to transfer a pattern from a master to the thin film, which was subsequently annealed to crystallize the NFO. Atomic force microscopy scans showed good periodicity and feature profile over a large area which was confirmed with cross-sectional transmission electron microscopy. X-ray diffraction revealed textured single-phase inverse spinel NFO. Magnetic measurements of patterned thin films showed a large reduction in coercivity due to demagnetization factors.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cullity, B.D. and Graham, C.D.: Introduction to Magnetic Materials, 2nd ed. (IEEE/Wiley, Hoboken, NJ, 2009).Google Scholar
2.Spaldin, N.A.: Magnetic Materials: Fundamentals and Applications, 2nd ed. (Cambridge University Press, Cambridge; New York, 2011).Google Scholar
3.Rai, R.C., Wilser, S., Guminiak, M., Cai, B., and Nakarmi, M.L.: Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. a-Mater 106, 207 (2012).Google Scholar
4.Srivastava, M., Ojha, A.K., Chaubey, S., and Materny, A.: Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515 (2009).Google Scholar
5.Zhao, P., Zhao, Z.L., Hunter, D., Suchoski, R., Gao, C., Mathews, S., Wuttig, M., and Takeuchi, I.: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 24 (2009).Google Scholar
6.Lin, L.Z., Li, Y.W., Soh, A.K., and Li, F.X.: A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113, 13 (2013).Google Scholar
7.Adam, J.D., Krishnaswamy, S.V., Talisa, S.H., and Yoo, K.C.: Thin-film ferrites for microwave and millimeter-wave applications. J. Magn. Magn. Mater. 83, 419 (1990).Google Scholar
8.Luders, U., Barthelemy, A., Bibes, M., Bouzehouane, K., Fusil, S., Jacquet, E., Contour, J.P., Bobo, J.F., Fontcuberta, J., and Fert, A.: NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733 (2006).Google Scholar
9.Chapline, M.G. and Wang, S.X.: Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006).Google Scholar
10.Chou, S.Y.: Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652 (1997).Google Scholar
11.Ross, C.A., Haratani, S., Castano, F.J., Hao, Y., Hwang, M., Shima, M., Cheng, J.Y., Vogeli, B., Farhoud, M., Walsh, M., and Smith, H.I.: Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848 (2002).CrossRefGoogle Scholar
12.Priya, S., Islam, R., Dong, S.X., and Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19, 149 (2007).Google Scholar
13.Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D, Appl. Phys. 38, R123 (2005).Google Scholar
14.Dixit, G., Singh, J.P., Srivastava, R.C., Agrawal, H.M., Choudhary, R.J., and Gupta, A.: Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287 (2010).Google Scholar
15.Jaffari, G.H., Rumaiz, A.K., Woicik, J.C., and Shah, S.I.: Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111, 9 (2012).Google Scholar
16.Williams, C.M., Chrisey, D.B., Lubitz, P., Grabowski, K.S., and Cotell, C.M.: The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-Ferrite films. J. Appl. Phys. 75, 1676 (1994).Google Scholar
17.Chinnasamy, C.N., Yoon, S.D., Yang, A., Baraskar, A., Vittoria, C., and Harris, V.G.: Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101, 9 (2007).Google Scholar
18.Rigato, F., Estrade, S., Arbiol, J., Peiro, F., Luders, U., Marti, X., Sanchez, F., and Fontcuberta, J.: Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mater. Sci. Eng. B-Solid 144, 43 (2007).CrossRefGoogle Scholar
19.Venzke, S., vanDover, R.B., Phillips, J.M., Gyory, E.M., Siegrist, T., Chen, C.H., Werder, D., Fleming, R.M., Felder, R.J., Coleman, E., and Opila, R.: Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mater. Res. 11, 1187 (1996).Google Scholar
20.Lind, D.M., Berry, S.D., Chern, G., Mathias, H., and Testardi, L.R.: Characterization of the structural and magnetic-ordering of Fe3O4/Nio superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218 (1991).Google Scholar
21.Seifikar, S., Calandro, B., Deeb, E., Sachet, E., Yang, J.J., Maria, J.P., Bassiri-Gharb, N., and Schwartz, J.: Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112, 12 (2012).Google Scholar
22.Xia, Y.N. and Whitesides, G.M.: Soft lithography. Angew Chem. Int. Ed. 37, 551 (1998).3.0.CO;2-G>CrossRefGoogle ScholarPubMed
23.Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495 (2007).Google Scholar
24.Gobel, O.F., Nedelcu, M., and Steiner, U.: Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131 (2007).Google Scholar
25.Peroz, C., Chauveau, V., Barthel, E., and Sondergard, E.: Nanoimprint lithography on silica sol–gels: a simple route to sequential patterning. Adv. Mater. 21, 555 (2009).Google Scholar
26.Dinachali, S.S., Saifullah, M.S.M., Ganesan, R., Thian, E.S., and He, C.B.: A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201 (2013).CrossRefGoogle Scholar
27.Wu, W., Yu, Z.N., Wang, S.Y., Williams, R.S., Liu, Y.M., Sun, C., Zhang, X., Kim, E., Shen, Y.R., and Fang, N.X.: Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90, 6 (2007).Google Scholar
28.Dai, S.X., Wang, Y., Zhang, D.B., Han, X., Shi, Q., Wang, S.J., and Du, Z.L.: Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel Sci. Technol. 60, 17 (2011).CrossRefGoogle Scholar
29.Hu, W., Wilson, R.J., Xu, L., Han, S.J., and Wang, S.X.: Patterning of high density magnetic nanodot arrays by nanoimprint lithography. J. Vac. Sci. Technol. A 25, 1294 (2007).Google Scholar
30.Seifikar, S., Calandro, B., Rasic, G., Deeb, E., Yang, J., Bassiri-Gharb, N., and Schwartz, J.: Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 30503053 (2013).Google Scholar
31.Efimenko, K., Wallace, W.E., and Genzer, J.: Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306 (2002).CrossRefGoogle ScholarPubMed
32.Bietsch, A. and Michel, B.: Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 88, 4310 (2000).CrossRefGoogle Scholar
33.Nalwa, H.S.: Handbook of Thin Film Materials: Nanomaterials and Magnetic Thin Films (Academic Press, San Diego, 2002).Google Scholar
34.Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).Google Scholar
35.JCPDS File No. 003-0875. JCPDS File No. 003-0875.Google Scholar
36.Heh, S.J. and Chen, S.K.: The effect of Lorentz demagnetization field (LDF) on the saturation magnetization of SmCo5 magnets. J. Appl. Phys. 63, 3981 (1988).Google Scholar
37.Zhao, Y.-P., Gamache, R.M., Wang, G.-C., Lu, T.-M., Palasantzas, G., and Hosson, J.T.M.D.: Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity. J. Appl. Phys. 89, 1325 (2001).Google Scholar
38.Jiang, Q., Yang, H.N., and Wang, G.C.: Effect of interface roughness on hysteresis loops of ultrathin Co films from 2 to 30 ML on Cu(001) surfaces. Surf. Sci. 373, 181 (1997).Google Scholar
39.Zhao, Y.P., Palasantzas, G., Wang, G.C., and De Hosson, J.T.M.: Surface/interface-roughness-induced demagnetizing effect in thin magnetic films. Phys. Rev. B 60, 1216 (1999).Google Scholar
40.Aurongzeb, D., Ram, K.B., and Menon, L.: Influence of surface/interface roughness and grain size on magnetic property of Fe/Co bilayer. Appl. Phys. Lett. 87, 17 (2005).Google Scholar
41.Ding, Z., Thibado, P.M., Awo-Affouda, C., and LaBella, V.P.: Electron-beam evaporated cobalt films on molecular beam epitaxy prepared GaAs(001). J. Vac. Sci. Technol. B 22, 2068 (2004).Google Scholar