Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T07:38:01.715Z Has data issue: false hasContentIssue false

Membranes with selective wettability for the separation of oil–water mixtures

Published online by Cambridge University Press:  24 August 2015

Gibum Kwon
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
Ethan Post
Affiliation:
Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Anish Tuteja*
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
*
Address all correspondence to Anish Tuteja at[email protected]
Get access

Abstract

The separation of oil–water mixtures is a widely utilized unit operation, used for handling a wide variety of mixtures from industry including: petroleum drilling and refining, fracking, waste-water treatment, mining, metal fabrication and machining, textile and leather processing, and rendering. Membrane-based methods have become increasingly attractive for the separation of oil–water mixtures because they are relatively energy-efficient, can be readily used to separate a variety of industrial feed streams, and provide consistent permeate quality. In this perspective, we discuss the design strategies for membranes with selective wettability i.e., membranes that are either selectively wet by, or prevent wetting by, the oil or water phase. The design strategies include the parameterization of two important physical characteristics: the surface porosity and the breakthrough pressure. We also discuss how they are related for membranes with a periodic geometry. On the basis of this understanding, we explore principles that allow for the systematic design of membranes with selective wettability. A review of the current literature on the separation of oil–water mixtures using membranes with differing wettabilities is also presented. Finally, we conclude by discussing the current challenges and outlook for the future of the field.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kajitvichyanukul, Y.-T.H.P. and Wang, L.K.: Handbook of Environmental Engineering, Vol 13: Membrane and Desalination Technologies (The Humana Press Inc., New York, 2011).Google Scholar
2.Office of the Federal Register: Code of Federal Regulations, Title 40-Protection of the Environment, Vol. 30, Part 435.13 (Washington, DC, 2014), pp. 299.Google Scholar
3.Patterson, J.W.: Industrial Wastewater Treatment Technology, 2nd ed. (Buttersworth, Stoneham, MA, 1985).Google Scholar
4.Mason, T.G., Wilking, J.N., Meleson, K., Chang, C.B., and Graves, S.M.: Nanoemulsions: formation, structure, and physical properties. J. Phys.—Condens. Matter. 18, R635 (2006).Google Scholar
5.Adebajo, M.O., Frost, R.L., Kloprogge, J.T., Carmody, O., and Kokot, S.: Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10, 159 (2003).Google Scholar
6.Cheryan, M. and Rajagopalan, N.: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13 (1998).CrossRefGoogle Scholar
7.Al-Shamrani, A.A., James, A., and Xiao, H.: Destabilisation of oil–water emulsions and separation by dissolved air flotation. Water Res. 36, 1503 (2002).Google Scholar
8.Rubio, J., Souza, M.L., and Smith, R.W.: Overview of flotation as a wastewater treatment technique. Miner. Eng. 15, 139 (2002).Google Scholar
9.Ichikawa, T.: Electrical demulsification of oil-in-water emulsion. Colloid Surface A 302, 581 (2007).Google Scholar
10.Al-Shamrani, A.A., James, A., and Xiao, H.: Separation of oil from water by dissolved air flotation. Colloid Surface A 209, 15 (2002).CrossRefGoogle Scholar
11.Toyoda, M. and Inagaki, M.: Heavy oil sorption using exfoliated graphite—new application of exfoliated graphite to protect heavy oil pollution. Carbon 38, 199 (2000).Google Scholar
12.Gupta, V.K., Carrott, P.J.M., and Carrott and Suhas, M.M.L.R.: Low-cost adsorbents: growing approach to wastewater treatmenta review. Crit. Rev. Environ. Sci. Tecnol. 39, 783 (2009).CrossRefGoogle Scholar
13.Rios, G., Pazos, C., and Coca, J.: Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloid Surface A 138, 383 (1998).Google Scholar
14.Song, L.F.: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. J. Membr. Sci. 139, 183 (1998).Google Scholar
15.Kong, J. and Li, K.: Oil removal from oil-in-water emulsions using PVDF membranes. Sep. Purif. Technol. 16, 83 (1999).CrossRefGoogle Scholar
16.Kai, M., Ishii, K., Tsugaya, H., and Miyano, T.: Development of polyether sulfone ultrafiltration membranes. In Reverse Osmosis and Ultrafiltration, edited by Sourirajan, S. and Matsuura, T.; ACS Symposium Series (ACS Publications, Washington, DC, 1985), pp. 2133.Google Scholar
17.Kota, A.K., Choi, W., and Tuteja, A.: Superomniphobic surfaces: design and durability. MRS Bull. 38, 383 (2013).CrossRefGoogle Scholar
18.Young, T.: An essay on the cohesion of fluids. Phil. Trans. R. Soc. 95, 65 (1805).Google Scholar
19.Tuteja, A., Choi, W., Ma, M.L., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., McKinley, G.H., and Cohen, R.E.: Designing superoleophobic surfaces. Science 318, 1618 (2007).CrossRefGoogle ScholarPubMed
20.Feng, X.J. and Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).Google Scholar
21.Kota, A.K., Kwon, G., and Tuteja, A.: The design and applications of superomniphobic surfaces. NPG Asia Mater. 6, e109 (2014).CrossRefGoogle Scholar
22.Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936).Google Scholar
23.Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 0546 (1944).Google Scholar
24.Choi, W., Tuteja, A., Mabry, J.M., Cohen, R.E., and McKinley, G.H.: A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J. Colloid Interface Sci. 339, 208 (2009).Google Scholar
25.Johnson, R. and Dettre, R.: Wettability and contact angles. Surface Colloid Sci. 2, 85 (1969).Google Scholar
26.Quere, D.: Rough ideas on wetting. Physica A 313, 32 (2002).CrossRefGoogle Scholar
27.McHale, G., Shirtcliffe, N.J., and Newton, M.I.: Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20, 10146 (2004).CrossRefGoogle ScholarPubMed
28.Marmur, A.: From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 24, 7573 (2008).Google Scholar
29.Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343 (2003).Google Scholar
30.Tuteja, A., Choi, W., Mabry, J.M., McKinley, G.H., and Cohen, R.E.: Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 105, 18200 (2008).Google Scholar
31.Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157 (2007).Google Scholar
32.Kota, A.K., Kwon, G., Choi, W., Mabry, J.M., and Tuteja, A.: Hygro-responsive membranes for effective oil–water separation. Nat Commun 3, 1025 (2012).CrossRefGoogle ScholarPubMed
33.Batchelor, G.K.: An Introduction to Fluid Dynamics (Cambridge University Press, New York, NY, 2000).CrossRefGoogle Scholar
34.Choi, W., Tuteja, A., Chhatre, S., Mabry, J.M., Cohen, R.E., and McKinley, G.H.: Fabrics with tunable oleophobicity. Adv. Mater. 21, 2190 (2009).Google Scholar
35.Tuteja, A., Choi, W.J., McKinley, G.H., Cohen, R.E., and Rubner, M.F.: Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 33, 752 (2008).Google Scholar
36.Chhatre, S.S., Choi, W., Tuteja, A., Park, K.C., Mabry, J.M., McKinley, G.H., and Cohen, R.E.: Scale dependence of omniphobic mesh surfaces. Langmuir 26, 4027 (2010).Google Scholar
37.Golovin, K., Lee, D.H., Mabry, J.M., and Tuteja, A.: Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. Angew. Chem. Int. Ed. Engl. 52, 13007 (2013).Google Scholar
38.Hensel, R., Finn, A., Helbig, R., Braun, H.G., Neinhuis, C., Fischer, W.J., and Werner, C.: Biologically inspired omniphobic surfaces by reverse imprint lithography. Adv. Mater. 26, 2029 (2014).Google Scholar
39.Feng, L., Zhang, Z.Y., Mai, Z.H., Ma, Y.M., Liu, B.Q., Jiang, L., and Zhu, D.B.: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 116, 2046 (2004).Google Scholar
40.Wu, J., Chen, J., Qasim, K., Xia, J., Lei, W., and Wang, B.P.: A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol. 87, 427 (2012).Google Scholar
41.Wang, Q.J., Cui, Z., Mao, Y., and Chen, Q.M.: Stable highly hydrophobic and oleophilic meshes for oil–water separation. Appl. Surf. Sci. 253, 9054 (2007).CrossRefGoogle Scholar
42.Cao, Y.Z., Zhang, X.Y., Tao, L., Li, K., Xue, Z.X., Feng, L., and Wei, Y.: Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater Interfaces 5, 4438 (2013).CrossRefGoogle ScholarPubMed
43.Wang, S.T., Song, Y.L., and Jiang, L.: Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology 18, 015103 (2007).Google Scholar
44.Wang, B. and Guo, Z.G.: Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl. Phys. Lett. 103, 063704 (2013).Google Scholar
45.Wang, C.X., Yao, T.J., Wu, J., Ma, C., Fan, Z.X., Wang, Z.Y., Cheng, Y.R., Lin, Q., and Yang, B.: Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interfaces 1, 2613 (2009).Google Scholar
46.Liu, N., Cao, Y.Z., Lin, X., Chen, Y.N., Feng, L., and Wei, Y.: A facile solvent-manipulated mesh for reversible oil/water separation. ACS Appl. Mater. Interfaces 6, 12821 (2014).Google Scholar
47.Crick, C.R., Gibbins, J.A., and Parkin, I.P.: Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. J. Mater. Chem. A 1, 5943 (2013).Google Scholar
48.Shang, Y.W., Si, Y., Raza, A., Yang, L.P., Mao, X., Ding, B., and Yu, J.Y.: An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale 4, 7847 (2012).CrossRefGoogle Scholar
49.Tang, X.M., Si, Y., Ge, J.L., Ding, B., Liu, L.F., Zheng, G., Luo, W.J., and Yu, J.Y.: In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale 5, 11657 (2013).CrossRefGoogle ScholarPubMed
50.Huang, M.L., Si, Y., Tang, X.M., Zhu, Z.G., Ding, B., Liu, L.F., Zheng, G., Luo, W.J., and Yu, J.Y.: Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A 1, 14071 (2013).Google Scholar
51.Zhang, W.B., Shi, Z., Zhang, F., Liu, X., Jin, J., and Jiang, L.: Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 25, 2071 (2013).Google Scholar
52.Wang, S.H., Li, M., and Lu, Q.H.: Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interfaces 2, 677 (2010).Google Scholar
53.Du, C., Wang, J.D., Chen, Z.F., and Chen, D.R.: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci. 313, 304 (2014).Google Scholar
54.Asthana, A., Maitra, T., Buchel, R., Tiwari, M.K., and Poulikakos, D.: Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black? ACS Appl. Mater. Interfaces 6, 8859 (2014).CrossRefGoogle ScholarPubMed
55.Shi, Z., Zhang, W.B., Zhang, F., Liu, X., Wang, D., Jin, J., and Jiang, L.: Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater. 25, 2422 (2013).CrossRefGoogle ScholarPubMed
56.Zhang, J.P. and Seeger, S.: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21, 4699 (2011).Google Scholar
57.Li, J., Shi, L., Chen, Y., Zhang, Y.B., Guo, Z.G., Su, B.L., and Liu, W.M.: Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J. Mater. Chem. 22, 9774 (2012).Google Scholar
58.Kavalenka, M.N., Hopf, A., Schneider, M., Worgull, M., and Holscher, H.: Wood-based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation. RSC Adv. 4, 31079 (2014).CrossRefGoogle Scholar
59.Maartens, A., Jacobs, E.P., and Swart, P.: UF of pulp and paper effluent: membrane fouling-prevention and cleaning. J. Membr. Sci. 209, 81 (2002).Google Scholar
60.Hu, B. and Scott, K.: Influence of membrane material and corrugation and process conditions on emulsion microfiltration. J. Membr. Sci. 294, 30 (2007).Google Scholar
61.Liu, M.J., Wang, S.T., Wei, Z.X., Song, Y.L., and Jiang, L.: Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21, 665 (2009).Google Scholar
62.Xue, Z.X., Liu, M.J., and Jiang, L.: Recent developments in polymeric superoleophobic surfaces. J. Polym. Sci. Polym. Phys. 50, 1209 (2012).Google Scholar
63.Xue, Z.X., Wang, S.T., Lin, L., Chen, L., Liu, M.J., Feng, L., and Jiang, L.: A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23, 4270 (2011).Google Scholar
64.Teng, C., Lu, X., Ren, G., Zhu, Y., Wan, M., and Jiang, L.: Underwater self-cleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures. Adv. Mater. Interfaces 1, 1400099 (2014).Google Scholar
65.Zhang, S.Y., Lu, F., Tao, L., Liu, N., Gao, C.R., Feng, L., and Wei, Y.: Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad ph range and hyper-saline environments. ACS Appl. Mater. Interfaces 5, 11971 (2013).Google Scholar
66.Lu, F., Chen, Y.N., Liu, N., Cao, Y.Z., Xu, L.X., Wei, Y., and Feng, L.: A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Adv. 4, 32544 (2014).Google Scholar
67.Jing, B.X., Wang, H.T., Lin, K.Y., McGinn, P.J., Na, C.Z., and Zhu, Y.X.: A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. Polymer 54, 5771 (2013).Google Scholar
68.Dong, Y., Li, J., Shi, L., Wang, X.B., Guo, Z.G., and Liu, W.M.: Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem. Commun. 50, 5586 (2014).Google Scholar
69.Wen, Q., Di, J.C., Jiang, L., Yu, J.H., and Xu, R.R.: Zeolite-coated mesh film for efficient oil–water separation. Chem. Sci. 4, 591 (2013).Google Scholar
70.Zeng, J.W. and Guo, Z.G.: Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation. Colloid Surf. A 444, 283 (2014).Google Scholar
71.Liu, N., Chen, Y.N., Lu, F., Cao, Y.Z., Xue, Z.X., Li, K., Feng, L., and Wei, Y.: Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. Chemphyschem 14, 3489 (2013).CrossRefGoogle ScholarPubMed
72.Zhu, Y.Z., Zhang, F., Wang, D., Pei, X.F., Zhang, W.B., and Jin, J.: A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A 1, 5758 (2013).Google Scholar
73.Chen, P.C. and Xu, Z.K.: Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Sci. Rep. –UK 3, 2776 (2013).Google Scholar
74.Yang, H.C., Liao, K.J., Huang, H., Wu, Q.Y., Wan, L.S., and Xu, Z.K.: Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A 2, 10225 (2014).CrossRefGoogle Scholar
75.Yang, H.C., Pi, J.K., Liao, K.J., Huang, H., Wu, Q.Y., Huang, X.J., and Xu, Z.K.: Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 6, 12566 (2014).Google Scholar
76.Ahmed, F.E., Lalia, B.S., Hilal, N., and Hashaikeh, R.: Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination 344, 48 (2014).Google Scholar
77.Raza, A., Ding, B., Zainab, G., El-Newehy, M., Al-Deyab, S.S., and Yu, J.Y.: In situ cross-linked superwetting nanofibrous membranes for ultrafast oil–water separation. J. Mater. Chem. A 2, 10137 (2014).Google Scholar
78.Liu, Q.S., Patel, A.A., and Liu, L.Y.: Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil–water separation. ACS Appl. Mater. Interfaces 6, 8996 (2014).Google Scholar
79.Chen, Y.N., Xue, Z.X., Liu, N., Lu, F., Cao, Y.Z., Sun, Z.X., and Feng, L.: Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions. RSC Adv. 4, 11447 (2014).Google Scholar
80.Yang, J., Zhang, Z.Z., Xu, X.H., Zhu, X.T., Men, X.H., and Zhou, X.Y.: Superhydrophilic-superoleophobic coatings. J. Mater. Chem. 22, 2834 (2012).CrossRefGoogle Scholar
81.Howarter, J.A. and Youngblood, J.P.: Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv. Mater. 19, 3838 (2007).Google Scholar
82.Zhang, L.B., Zhong, Y.J., Cha, D., and Wang, P.: A self-cleaning underwater superoleophobic mesh for oil–water separation. Sci. Rep. – UK 3, 2326 (2013).Google Scholar
83.Gao, P., Liu, Z.Y., Sun, D.D., and Ng, W.J.: The efficient separation of surfactant-stabilized oil–water emulsions with a flexible and superhydrophilic graphene-TiO2 composite membrane. J. Mater. Chem. A 2, 14082 (2014).Google Scholar
84.Sawai, Y., Nishimoto, S., Kameshima, Y., Fujii, E., and Miyake, M.: Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir 29, 6784 (2013).Google Scholar
85.Yang, J., Song, H.J., Yan, X.H., Tang, H., and Li, C.S.: Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose 21, 1851 (2014).Google Scholar
86.Zhu, X.Y., Loo, H.E., and Bai, R.B.: A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci. 436, 47 (2013).Google Scholar
87.Zhu, X.Y., Tu, W.T., Wee, K.H., and Bai, R.B.: Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci. 466, 36 (2014).Google Scholar
88.Howarter, J.A. and Youngblood, J.P.: Amphiphile grafted membranes for the separation of oil-in-water dispersions. J. ColloidInterface Sci. 329, 127 (2009).Google Scholar
89.Yoon, H., Na, S.H., Choi, J.Y., Latthe, S.S., Swihart, M.T., Al-Deyab, S.S., and Yoon, S.S.: Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil–water separation and water purification by graphene. Langmuir 30, 11761 (2014).Google Scholar
90.Berge, B.: Electrocapillarity and wetting of insulator films by water. C. R. Acad. Sci. II 317, 157 (1993).Google Scholar
91.Kwon, G., Kota, A.K., Li, Y.X., Sohani, A., Mabry, J.M., and Tuteja, A.: On-demand separation of oil–water mixtures. Adv. Mater. 24, 3666 (2012).Google Scholar