Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T10:40:45.614Z Has data issue: false hasContentIssue false

Mechanically modulated electronic properties of water-filled fullerenes

Published online by Cambridge University Press:  08 May 2015

K. Min*
Affiliation:
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
A. Barati Farimani
Affiliation:
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
N. R. Aluru
Affiliation:
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
*
Address all correspondence K. Min at[email protected]
Get access

Abstract

We report on electronic properties of water-filled fullerenes [H2O(n)@C60, H2O(n)@C180, and H2O(n)@C240] under mechanical deformation using density functional theory. Under a point load, energy gap change of empty and water-filled fullerenes is investigated. For C60 and H2O(n)@C60, the energy gap decreases as the tensile strain increases. For H2O(n)@C60, under compression, the energy gap decreases monotonously while for C60, it first decreases and then increases. Similar behavior is observed for other empty (C180 and C240) and water-filled [H2O(n)@C180 and H2O(n)@C240] fullerenes. The energy gap decrease of water-filled fullerenes is due to the increased interaction between water and carbon wall under deformation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kurotobi, K. and Murata, Y.: A single molecule of water encapsulated in fullerene C60. Science 333, 613 (2011).Google Scholar
2.Weidinger, A., Waiblinger, M., Pietzak, B., and Murphy, T.A.: Atomic nitrogen in C60: N@ C60. Appl. Phys. A 66, 287 (1998).Google Scholar
3.Pupysheva, O.V., Farajian, A.A., and Yakobson, B.I.: Fullerene nanocage capacity for hydrogen storage. Nano Lett. 8, 767 (2007).Google Scholar
4.Shen, H.: The compressive mechanical properties of C60 and endohedral M@ C60 (M=Si, Ge) fullerene molecules. Mater. Lett. 60, 2050 (2006).Google Scholar
5.Min, K., Farimani, A.B., and Aluru, N.: Mechanical behavior of water filled C60. Appl. Phys. Lett. 103, 263112 (2013).Google Scholar
6.Farimani, A.B., Wu, Y., and Aluru, N.: Rotational motion of a single water molecule in a buckyball. Phys. Chem. Chem. Phys. 15, 17993 (2013).Google Scholar
7.Rivelino, R. and de Brito Mota, F.: Band gap and density of states of the hydrated C60 fullerene system at finite temperature. Nano Lett. 7, 1526 (2007).Google Scholar
8.Kawahara, S.L., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Smogunov, A., and Barreteau, C.: Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett. 12, 4558 (2012).Google Scholar
9.Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., and Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301 (2008).Google Scholar
10.Yang, L., Anantram, M., Han, J., and Lu, J.: Band-gap change of carbon nanotubes: effect of small uniaxial and torsional strain. Phys. Rev. B 60, 13874 (1999).Google Scholar
11.Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V., and Stesmans, A.: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43 (2012).Google Scholar
12.Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
13.Dumitrică, T., Belytschko, T., and Yakobson, B.I.: Bond-breaking bifurcation states in carbon nanotube fracture. Journal of Chem. Phys. 118, 9485 (2003).Google Scholar
14.Leu, P.W., Svizhenko, A., and Cho, K.: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).Google Scholar
15.Topsakal, M. and Ciraci, S.: Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys. Rev. B 81, 024107 (2010).Google Scholar
16.Ye, W., Min, K., Martin, P.P., Rockett, A.A., Aluru, N., and Lyding, J.W.: Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si (100)-2× 1: H surface. Surf. Sci. 609, 147 (2012).CrossRefGoogle Scholar
17.Kumar, B., Min, K., Bashirzadeh, M., Farimani, A.B., Bae, M.-H., Estrada, D., Kim, Y.D., Yasaei, P., Park, Y.D., and Pop, E.: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013).Google Scholar
18.Farimani, A.B., Min, K., and Aluru, N.R.: DNA base detection using a single-layer MoS2. ACS Nano 8, 7914 (2014).Google Scholar
19.Seidl, A., Görling, A., Vogl, P., Majewski, J.A., and Levy, M.: Generalized Kohn–Sham schemes and the band-gap problem. Phys. Rev. B 53, 3764 (1996).Google Scholar
20.Lany, S. and Zunger, A.: Many-body GW calculation of the oxygen vacancy in ZnO. Phys. Rev. B 81, 113201 (2010).CrossRefGoogle Scholar
21.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
22.Hammer, B., Hansen, L.B., and Nørskov, J.K.: Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).Google Scholar
23.Troullier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).Google Scholar
24.Valentini, P., Gerberich, W., and Dumitrică, T.: Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 99, 175701 (2007).Google Scholar
25.Calaminici, P., Geudtner, G., and Köster, A.M.: First-principle calculations of large fullerenes. J. Chem. Theory Comput. 5, 29 (2008).Google Scholar
26.Zope, R.R. and Baruah, T., Pederson, M.R. and Dunlap, B.: Static dielectric response of icosahedral fullerenes from C_ {60} to C_ {2160} characterized by an all-electron density functional theory. Phys. Rev. B 77, 115452 (2008).Google Scholar
27.Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155 (2003).Google Scholar
Supplementary material: File

Min supplementary material

Min supplementary material 1

Download Min supplementary material(File)
File 391.2 KB