Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T07:43:45.477Z Has data issue: false hasContentIssue false

Mechanical annealing of Cu–Si nanowires during high-cycle fatigue

Published online by Cambridge University Press:  16 June 2014

Charlotte Ensslen
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Oliver Kraft
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Reiner Mönig*
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Jin Xu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China
Guang-Ping Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China
Reinhard Schneider
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
*
Address all correspondence to Reiner Mönig at[email protected]
Get access

Abstract

Monotonic and cyclic tension–tension tests with an upper stress in the GPa regime have been performed on Cu–Si nanowires. The results show that the exceptional high strength of these nanomaterials is maintained or even improved upon cyclic loading. Post-mortem transmission electron microscopy gives insight in the microstructural evolution. Fatigue-induced grain growth correlates with an observed increase in compliance, the formation of dislocation networks, and an increase in tensile strength.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 54, 1705 (2006).CrossRefGoogle Scholar
2.Sedlmayr, A., Bitzek, E., Gianola, D.S., Richter, G., Mönig, R., and Kraft, O.: Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Mater. 60, 3985 (2012).CrossRefGoogle Scholar
3.Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
4.Kraft, O., Gruber, P.A., Monig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
5.Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46, 56115626 (1998).Google Scholar
6.Peng, C., Zhan, Y.J., and Lou, J.: Size-dependent fracture mode transition in copper nanowires. Small 8, 18891894 (2012).Google Scholar
7.Schopf, C., Schamel, M., Strunk, H.P., and Richter, G.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Adv. Eng. Mater. 14, 975 (2012).CrossRefGoogle Scholar
8.Bitzek, E.: Atomistic study of twinning in gold nanowhiskers. J. Solid Mech. Mater. Eng. 6, 99 (2012).Google Scholar
9.Agnew, S.R. and Weertman, J.R.: Cyclic softening of ultrafine grain copper. Mater. Sci. Eng. A 244, 145 (1998).Google Scholar
10.Witney, A.B., Sanders, P.G., Weertman, J.R., and Eastman, J.A.: Fatigue of nanocrystalline copper. Scr. Metall. Mater. 33, 2025 (1995).CrossRefGoogle Scholar
11.Schwaiger, R., Dehm, G., and Kraft, O.: Cyclic deformation of polycrystalline Cu film. Phil. Mag. 83, 693 (2003).Google Scholar
12.Yang, B., Motz, C., Grosinger, W., and Dehm, G.: Stress-controlled fatigue behaviour of micro-sized polycrystalline copper wires. Mater. Sci. Eng. A 515, 71 (2009).CrossRefGoogle Scholar
13.Khatibi, G., Betzwar-Kotas, A., Groger, V., and Weiss, B.: A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract. Eng. Mater. Struct. 28, 723 (2005).Google Scholar
14.Hofbeck, R., Hausmann, K., Ilschner, B., and Kunzi, H.U.: Fatigue of very thin copper and gold wires. Scr. Metall. 20, 1601 (1986).Google Scholar
15.Zhang, G.P. and Wang, Z.G.: Fatigue of small-scale metal materials: from micro- to nano-scale, in Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness, edited by Sih, G.C. (Springer, Netherlands, 2008), p. 275.Google Scholar
16.Padilla, H.A. and Boyce, B.L.: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5 (2010).Google Scholar
17.Brenner, S.S.: Plastic deformation of copper and silver whiskers. J. Appl. Phys. 28, 1023 (1957).CrossRefGoogle Scholar
18.Kiener, D., Grosinger, W., Dehm, G., and Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580 (2008).Google Scholar
19.Jennings, A.T. and Greer, J.R.: Tensile deformation of electroplated copper nanopillars. Phil. Mag. 91, 1108 (2011).Google Scholar
20.Richter, G., Hillerich, K., Gianola, D.S., Monig, R., Kraft, O., and Volkert, C.A.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).Google Scholar
21.Lee, S., Im, J., Yoo, Y., Bitzek, E., Kiener, D., Richter, G., Kim, B., and Oh, S.H.: Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM. Nat. Commun. 5, 3033 (2014).Google Scholar
22.Schamel, M., Schopf, C., Linsler, D., Haag, S.T., Hofacker, L., Kappel, C., Strunk, H.P., and Richter, G.: The filamentary growth of metals. Int. J. Mater. Res. 102, 828 (2011).Google Scholar
23.Boles, S.T., Sedlmayr, A., Kraft, O., and Monig, R.: In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications. Appl. Phys. Lett. 100, 243901 (2012).CrossRefGoogle Scholar
24.Gianola, D.S., Sedlmayr, A., Monig, R., Volkert, C.A., Major, R.C., Cyrankowski, E., Asif, S.A.S., Warren, O.L., and Kraft, O.: In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev. Sci. Instrum. 82, 063901 (2011).CrossRefGoogle ScholarPubMed
25.Boroch, R.E., Müller-Fiedler, R., Bagdahn, J., and Gumbsch, P.: High-cycle fatigue and strengthening in polycrystalline silicon. Scr. Mater. 59, 936 (2008).Google Scholar
26.Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).CrossRefGoogle ScholarPubMed
27.Zhang, D., Breguet, J.-M., Clavel, R., Philippe, L., Utke, I., and Michler, J.: In situ tensile testing of individual Co nanowires inside a scanning electron microscope. Nanotechnology 20, 365706 (2009).Google Scholar
28.Huang, H.B. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
29.Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).Google Scholar
30.Holzwarth, U. and Essmann, U.: Transformation of dislocation patterns in fatigued copper single crystals. Mater. Sci. Eng. A 164, 206 (1993).CrossRefGoogle Scholar
Supplementary material: File

Ensslen Supplementary Material

Table S1

Download Ensslen Supplementary Material(File)
File 46.1 KB