Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T07:25:30.111Z Has data issue: false hasContentIssue false

Low-temperature aqueous solution processed fluorine-doped zinc tin oxide thin-film transistors

Published online by Cambridge University Press:  26 January 2012

Jun-Hyuck Jeon
Affiliation:
Laboratory of Optical Materials and Coating (LOMC), Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
Young Hwan Hwang
Affiliation:
Laboratory of Optical Materials and Coating (LOMC), Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
JungHo Jin
Affiliation:
Laboratory of Optical Materials and Coating (LOMC), Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
Byeong-Soo Bae*
Affiliation:
Laboratory of Optical Materials and Coating (LOMC), Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
*
Address all correspondence to Byeong-Soo Bae at[email protected]
Get access

Abstract

Novel fluorine-doped zinc tin oxide (ZTO:F) thin-film transistors (TFTs) have been fabricated using an aqueous solution process. Exploiting hydrolysis and condensation reactions in an aqueous solution process, organic-free ZTO:F thin films were fabricated at a low temperature of 250 °C. The fabricated TFT device shows a field-effect mobility of 2.85 cm2/V s, on-to-off current ratios exceeding 107, and sub-threshold swings of 0.83 V/dec. The ZTO:F TFT also displays high operational stability of ΔVth = 1.73 V despite incorporation of a large amount of fluorine and use of a low-temperature annealing process. This is attributed to effective passivation of oxygen vacancy diffusion by metal fluoride bonds at the ZTO:F channel/gate dielectric interface.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488492 (2004).CrossRefGoogle ScholarPubMed
2.Adamopoulos, G., Bashir, A., Wobkenberg, P.H., Bradley, D.D.C., and Anthopoulos, T.D.: Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air. Appl. Phys. Lett. 95, 133507 (2009).CrossRefGoogle Scholar
3.Adamopoulos, G., Bashir, A., Thomas, S., Gillin, W.P., Georgakopoulos, S., Shkunov, M., Baklar, M.A., Stingeline, N., Maher, R.C., Cohen, L.F., Bradley, D.D.C., and Anthopoulos, T.D.: Spray-deposited Li-doped ZnO transistors with electron mobility exceeding 50 cm2/V·s. Adv. Mater. 22, 47644769 (2010).CrossRefGoogle Scholar
4.Banger, K.K., Yamashita, Y., Mori, K., Peterson, R.L., Leedham, T., Rickard, J., and Sirringhaus, H.: Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10, 4550 (2011).CrossRefGoogle ScholarPubMed
5.Brinker, C.J. and Scherer, G.W.: Sol–Gel Science (Academic Press, Boston, 1990), p. 42.Google Scholar
6.Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., and Keszler, D.A.: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).CrossRefGoogle Scholar
7.Avis, C. and Jang, J.: A high performance inkjet printed zinc tin oxide transparent thin-film transistor manufactured at the maximum process temperature of 300 °C and its stability test. Electrochem. Solid-State Lett. 14, J9J11 (2011).CrossRefGoogle Scholar
8.Seo, S.J., Hwang, Y.H., and Bae, B.S.: Postannealing process for low temperature processed sol–gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 13, H357H359 (2010).CrossRefGoogle Scholar
9.Srivastava, O.K. and Secco, E.A.: Studies on metal hydroxy compounds. I. Thermal analyses of zinc derivatives ε-Zn(OH)2, Zn5(OH)8Cl2·H2O, β-ZnOHCl, and ZnOHF. Can. J. Chem. 45, 579 (1967).Google Scholar
10.Seby, F., Potin-Gautier, M., Giffaut, E., and Donard, O.F.X.: A critical review of thermodynamic data for inorganic tin species. Geochim. Cosmochim. Acta 65, 30413053 (2001).CrossRefGoogle Scholar
11.Niederberger, M. and Pinna, N.: Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application (Springer, London, 2009), p.11.CrossRefGoogle Scholar
12.Tsukuma, K., Akiyama, T., and Imai, H.: Liquid phase deposition film of tin oxide. J. Non-Cryst. Solids 210, 4854 (1997).CrossRefGoogle Scholar
13.Lee, D.H., Chang, Y.J., Herman, G.S., and Chang, C.H.: A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843847 (2007).CrossRefGoogle Scholar
14.Hayashi, Y., Kondo, K., Murai, K., Moriga, T., Nakabayashim, I., Fukumoto, H., and Tominaga, K.: ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum 74, 607611 (2004).CrossRefGoogle Scholar
15.Seo, S.J., Choi, C.G., Hwang, Y.H., and Bae, B.S.: High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D: Appl. Phys. 42, 035106 (2009).CrossRefGoogle Scholar
16.Park, S.K., Kim, Y.H., Kim, H.S., and Han, J.I.: High performance solution-processed and lithographically patterned zinc-tin oxide thin-film transistors with good operational stability. Electrochem. Solid-State Lett. 12, H256H258 (2009).CrossRefGoogle Scholar
17.Jeong, Y.M., Bae, C.D., Kim, D.J., Song, K.K., Woo, K.H., Shin, H.J., Cao, G., and Moon, J.H.: Bias-stress-stable solution-processed oxide thin film transistors. Appl. Mater. Interfaces 2, 611615 (2010).CrossRefGoogle ScholarPubMed
18.Oswald, S. and Baunack, S.: Factor analysis and XPS-data preprocessing for non-conducting samples. Fresen. J. Anal. Chem. 365, 5962 (1999).CrossRefGoogle Scholar
19.Jeong, J.K., Yang, H.W., Jeong, J.H., Mo, Y.G., and Kim, H.D.: Origin of threshold voltage instability in indium–gallium–zinc oxide thin film transistors. Appl. Phys. Lett. 93, 123508 (2008).CrossRefGoogle Scholar
20.Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors. Appl. Phys. Lett. 95, 013502 (2009).CrossRefGoogle Scholar
21.Lai, C.S., Wu, W.C., Chao, T.S., Chen, J.H., Wang, J.C., Tany, L.-L., and Rowell, N.: Suppression of interfacial reaction for HfO2 on silicon by pre-CF4 plasma treatment. Appl. Phys. Lett. 89, 072904 (2006).CrossRefGoogle Scholar
22.Tseng, H.-H., Tobin, P.J., Hebert, E.A., Kalpat, S., Ramón, M.E., Fonseca, L., Jiang, Z.X., Schaeffer, J.K., Hegde, R.I., Triyoso, D.H., Gilmer, D.C., Taylor, W.J., Capasso, C.C., Adetutu, O., Sing, D., Conner, J., Luckowski, E., Chan, B.W., Haggag, A., Backer, S., Noble, R., Jahanbani, M., Chiu, Y.H., and White, B.E.: Defect passivation with fluorine in a TaxCy/high-k gate stack for enhanced device threshold voltage stability and performance. IEDM Tech. Dig. 29.4.1–29.4.4 (2005). Available at http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1609447&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DDefect+passivation+with+fluorine+in+a+TaxCy%2Fhigh-k+gate+stack+for+enhanced+device+threshold+voltage+stability+and+performanceGoogle Scholar
23.Martinez, A.I., Huerta, L., O-Rueda de Leon, J.M., Acosta, D., Malik, O., and Aguilar, M.: Physicochemical characteristics of fluorine doped tin oxide films. J. Phys. D: Appl. Phys. 39, 50915096 (2006).CrossRefGoogle Scholar
24.Kawamoto, Y., Ogura, K., Shojiya, M., Takahashi, M., and Kadono, K.: F1s XPS of fluoride glasses and related fluoride crystals. J. Fluorine Chem. 96, 135139 (1999).CrossRefGoogle Scholar