Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T07:37:23.590Z Has data issue: false hasContentIssue false

Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN

Published online by Cambridge University Press:  24 July 2015

Leah Y. Kuritzky*
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
James S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
*
Address all correspondence to Leah Y. Kuritzky at[email protected]
Get access

Abstract

More than two decades of III-N materials research has led to the production of visible spectrum commercial light-emitting diodes (LEDs) and laser diodes (LDs). Commercial c-plane LEDs are currently limited by efficiency droop which describes the decline in efficiency with increasing input current density. Laser-based sources, however, provide peak efficiencies at much higher current densities and may circumvent efficiency droop limitations. The potential benefits of non-basal plane (NBP) orientations could accelerate the evolution of solid-state lighting from LED to LD sources. Here, we review the progress in long-wavelength (440–590 nm) NBP quantum well LD research and discuss applications in solid-state lighting, visible light communication and smart lighting.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nakamura, S.: Background story of the invention of efficient blue InGaN light emitting diodes. Nobel Lecture (2014). Available at http://www.nobelprize.org/mediaplayer/index.php?id=2423Google Scholar
2.Nakamura, S., Mukai, T., and Senoh, M.: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett 64, 16871689 (1994).Google Scholar
3.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S.-I.: High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structures. Jpn. J. Appl. Phys. 34, L797L799 (1995).Google Scholar
4.Lang, J.R., Neufeld, C.J., Hurni, C.A., Cruz, S.C., Matioli, E., Mishra, U.K., and Speck, J.S.: High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy. Appl. Phys. Lett. 98, 131115 (2011).Google Scholar
5.Matioli, E., Neufeld, C., Iza, M., Cruz, S.C., Al-Heji, A.a, Chen, X., Farrell, R.M., Keller, S., DenBaars, S., Mishra, U., Nakamura, S., Speck, J., and Weisbuch, C.: High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 98, 021102 (2011).Google Scholar
6.Mishra, U.: Redefining energy efficiency. Presentation for the Institute for Energy Efficiency, UCSB (2014). Available at http://iee.ucsb.edu/files/04%20Umesh%20Mishra%20Transphorm%20-%20IEE%20Summit.pdfGoogle Scholar
7.Taniyasu, Y., Kasu, M., and Makimoto, T.: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325328 (2006).Google Scholar
8.Ohkawa, K., Watanabe, T., Sakamoto, M., Hirako, A., and Deura, M.: 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. J. Cryst. Growth 343, 1316 (2012).CrossRefGoogle Scholar
9.Kawaguchi, Y., Huang, C.Y., Wu, Y.R., Zhao, Y., DenBaars, S.P., and Nakamura, S.: Semipolar (20–21) single-quantum-well red light-emitting diodes with a low forward voltage. Jpn. J. Appl. Phys. 52, 08JC08 (2013).Google Scholar
10.Yoshida, H., Yamashita, Y., Kuwabara, M., and Kan, H.: Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett. 93, 241106 (2008).Google Scholar
11.Takagi, S., Enya, Y., Kyono, T., Adachi, M., Yoshizumi, Y., Sumitomo, T., Yamanaka, Y., Kumano, T., Tokuyama, S., Sumiyoshi, K., Saga, N., Ueno, M., Katayama, K., Ikegami, T., Nakamura, T., Yanashima, K., Nakajima, H., Tasai, K., Naganuma, K., Fuutagawa, N., Takiguchi, Y., Hamaguchi, T., Ikeda, M.: High-power (over 100 mW) green laser diodes on semipolar {20–21} GaN substrates operating at wavelengths beyond 530 nm. Appl. Phys. Express 5, 082102 (2012).CrossRefGoogle Scholar
12.Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A.: Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 21732176 (1984).Google Scholar
13.Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I.: Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382L385 (1997).Google Scholar
14.Raring, J.W., Hall, E.M., Schmidt, M.C., Poblenz, C., Li, B., Pfister, N., Feezell, D.F., Craig, R., Speck, J.S., DenBaars, S.P., and Nakamura, S.: State-of-the-art continuous-wave InGaN laser diodes in the violet, blue and green wavelength regimes. Proc. SPIE 7686, 76860L (2010).Google Scholar
15.Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H.T., Menniger, J., Reiche, M., Uecker, R., Reiche, P., and Ploog, K.H.: Growth of m-plane GaN (1–100): a way to evade electrical polarization in nitrides. Phys. Status Solidi 180, 133138 (2000).Google Scholar
16.Craven, M.D., Lim, S.H., Wu, F., Speck, J.S., and DenBaars, S.P.: Structural characterization of nonpolar ($11\bar 20$) a-plane GaN thin films grown on ($1\bar 102$) r-plane sapphire. Appl. Phys. Lett. 81, 469 (2002).Google Scholar
17.Pan, C.-C., Tanaka, S., Wu, F., Zhao, Y., Speck, J.S., Nakamura, S., DenBaars, S.P., and Feezell, D.: High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes. Appl. Phys. Express 5, 062103 (2012).CrossRefGoogle Scholar
18.Okamoto, K., Kashiwagi, J., Tanaka, T., and Kubota, M.: Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm. Appl. Phys. Lett. 94, 071105 (2009).Google Scholar
19.Enya, Y., Yoshizumi, Y., Kyono, T., Akita, K., Ueno, M., Adachi, M., Sumitomo, T., Tokuyama, S., Ikegami, T., Katayama, K., and Nakamura, T.: 531 nm green lasing of InGaN based laser diodes on semi-polar {20–21} free-standing GaN substrates. Appl. Phys. Express 2, 082101 (2009).Google Scholar
20.Ueno, M., Yoshizumi, Y., Enya, Y., Kyono, T., Adachi, M., Takagi, S., Tokuyama, S., Sumitomo, T., Sumiyoshi, K., Saga, N., Ikegami, T., Katayama, K., and Nakamura, T.: InGaN-based true green laser diodes on novel semi-polar {20-21} GaN substrates. J. Cryst. Growth 315, 258262 (2011).Google Scholar
21.Yoshizumi, Y., Adachi, M., Enya, Y., Kyono, T., Tokuyama, S., Sumitomo, T., Akita, K., Ikegami, T., Ueno, M., Katayama, K., and Nakamura, T.: Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {20–21} GaN substrates. Appl. Phys. Express 2, 092101 (2009).Google Scholar
22.Miyoshi, T., Masui, S., Okada, T., Yanamoto, T., Kozaki, T., Nagahama, S., and Mukai, T.: 510–515 nm InGaN-Based green laser diodes on c-plane GaN substrate. Appl. Phys. Express 2, 062201 (2009).Google Scholar
23.Masui, S., Miyoshi, T., Yanamoto, T., and Nagahama, S.: Blue and green laser diodes for large laser display. In Conf. Lasers Electro-Optics Pacific Rim. 1–2 (2013).Google Scholar
24.Jahangir, S., Frost, T., Hazari, A., Yan, L., Stark, E., LaMountain, T., Millunchick, J.M., Ooi, B.S., and Bhattacharya, P.: Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon. Appl. Phys. Lett. 106, 071108 (2015).Google Scholar
25.Frost, T., Jahangir, S., Stark, E., Deshpande, S., Hazari, A., Zhao, C., Ooi, B.S., and Bhattacharya, P.: Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett. 14, 45354541 (2014).Google Scholar
26.Zhang, M., Banerjee, A., Lee, C.-S., Hinckley, J.M., and Bhattacharya, P.: A InGaN/GaN quantum dot green (λ = 524 nm) laser. Appl. Phys. Express 98, 221104 (2011).Google Scholar
27.Frost, T., Banerjee, A., Sun, K., Chuang, S.L., and Bhattacharya, P.: InGaN/GaN quantum dot red (630 nm) laser. IEEE J. Quantum Electron. 49, 923931 (2013).Google Scholar
28.Kioupakis, E., Rinke, P., Delaney, K.T., and Van de Walle, C.G.: Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011).Google Scholar
29.Iveland, J., Martinelli, L., Peretti, J., Speck, J.S., and Weisbuch, C.: Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).CrossRefGoogle ScholarPubMed
30.David, A. and Grundmann, M.J.: Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96, 103504 (2010).Google Scholar
31.Wierer, J.J., Tsao, J.Y., and Sizov, D.S.: Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. 7, 963993 (2013).Google Scholar
32.Funato, M., Kim, Y.S., Ochi, Y., Kaneta, A., Kawakami, Y., Miyoshi, T., and Nagahama, S.: Optical gain spectra of a (0001) InGaN green laser diode. Appl. Phys. Express 6, 122704 (2013).Google Scholar
33.Raring, J.W., Schmidt, M.C., Poblenz, C., Chang, Y.C., Mondry, M.J., Li, B., Iveland, J., Walters, B., Krames, M.R., Craig, R., Rudy, P., Speck, J.S., DenBaars, S.P., and Nakamura, S.: High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates. Appl. Phys. Express 3, 112101 (2010).Google Scholar
34.Brüninghoff, S., Eichler, C., Tautz, S., Lell, A., Sabathil, M., Lutgen, S., and Strauß, U.: 8W single-emitter InGaN laser in pulsed operation. Phys. Status Solidi 206, 11491152 (2009).Google Scholar
35.Pourhashemi, A., Farrell, R.M., Cohen, D.A., Speck, J.S., DenBaars, S.P., and Nakamura, S.: High-power blue laser diodes with indium tin oxide cladding on semipolar (20-2-1) GaN substrates. Appl. Phys. Lett. 106, 111105 (2015).Google Scholar
36.Vierheilig, C., Eichler, C., Tautz, S., Lell, A., Müller, J., Kopp, F., Stojetz, B., Hager, T., Brüderl, G., Avramescu, A., Lermer, T., Ristic, J., and Strauss, U.: Beyond blue pico laser: development of high power blue and low power direct green. Proc. SPIE 8277, 82770K 1–7 (2012).Google Scholar
37.Melo, T.: Analysis of gain and absorption spectra of GaN-based laser diodes. PhD dissertation, University of California, Santa Barbara (2012).Google Scholar
38.Michel, N., Lecomte, M., Parillaud, O., Calligaro, M., Nagle, J., and Krakowski, M.: Optimization of the wall-plug efficiency of Al-free active region diode lasers at 975 nm. Proc. SPIE 6997, 69971W 1–8 (2008).Google Scholar
39.Crump, P., Dong, W., Grimshaw, M., Wang, J., Patterson, S., Wise, D., DeFranza, M., Elim, S., Zhang, S., Bougher, M., Patterson, J., Das, S., Bell, J., Farmer, J., DeVito, M., and Martinsen, R.: 100-W+ diode laser bars show >71% power conversion from 790-nm to 1000-nm and have clear route to > 85%. Proc. SPIE 6456, 64560M (2007).Google Scholar
40.Li, H.X., Chyr, I., Jin, X., Reinhardt, F., Towe, T., Brown, D., Nguyen, T., Berube, M., Truchan, T., Hu, D., Miller, R., Srinivasan, R., Crum, T., Wolak, E., Bullock, R., Mott, J., and Harrison, J.: >700 W continuous-wave output power from single laser diode bar. Electron. Lett. 43, 1 (2007).Google Scholar
41.Kioupakis, E., Rinke, P., Schleife, A., Bechstedt, F., and Walle, C.: Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81, 241201 (2010).Google Scholar
42.Hardy, M.T., Holder, C.O., Feezell, D.F., Nakamura, S., Speck, J.S., Cohen, D.A., and DenBaars, S.P.: Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl. Phys. Lett. 103, 081103 (2013).Google Scholar
43.Chua, C., Yang, Z., Knollenberg, C., Teepe, M., Cheng, B., Strittmatter, A., Bour, D., and Johnson, N.M.: InAlGaN optical emitters – laser diodes with non-epitaxial cladding layers and ultraviolet light-emitting diodes. Proc. SPIE 7939, 793918 (2011).Google Scholar
44.Nedy, J., Young, N., Kelchner, K.M., Hu, Y., Farrell, R.M., Nakamura, S., DenBaars, S.P., Weisbuch, C., and Speck, J.S.: Low damage dry etch for III-nitride light emitters. Semicond. Sci. Technol., in press. (2015).Google Scholar
45.Abare, A.C., Hansen, M., Speck, J.S., DenBaars, S.P., and Coldren, L.A.: Electrically pumped distributed feedback nitride lasers employing embedded dielectric gratings. Electron. Lett. 35, 15591560 (1999).CrossRefGoogle Scholar
46.Feezell, D.F., Schmidt, M.C., Farrell, R.M., Kim, K.-C., Saito, M., Fujito, K., Cohen, D.A., Speck, J.S., DenBaars, S.P., and Nakamura, S.: AlGaN-cladding-free nonpolar InGaN/GaN laser diodes. Jpn. J. Appl. Phys. 46, L284L286 (2007).Google Scholar
47.Kawaguchi, Y., Huang, S.-C., Farrell, R.M., Zhao, Y., Speck, J.S., DenBaars, S.P., and Nakamura, S.: Dependence of electron overflow on emission wavelength and crystallographic orientation in single-quantum-well III–nitride light-emitting diodes. Appl. Phys. Express 6, 052103 (2013).Google Scholar
48.Sizov, D., Bhat, R., Song, K., Allen, D., Paddock, B., Coleman, S., Hughes, L.C., and Zah, C.: 60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K. Appl. Phys. Express 4, 102103 (2011).Google Scholar
49.Wierer, J.J., Tsao, J.Y., and Sizov, D.S.: The potential of III-nitride laser diodes for solid-state lighting. Phys. Status Solidi 11, 674677 (2014).Google Scholar
50.Zhao, Y., Farrell, R.M., Wu, Y.-R., and Speck, J.S.: Valence band states and polarized optical emission from nonpolar and semipolar III – nitride quantum well optoelectronic devices. Jpn. J. Appl. Phys. 53, 100206 (2014).Google Scholar
51.Fujito, K., Kubo, S., and Fujimura, I.: Development of Bulk GaN crystals and nonpolar/semipolar substrates by HVPE. MRS Bull. 34, 313317 (2009).Google Scholar
52.Domen, K., Horino, K., Kuramata, A., and Tanahashi, T.: Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN. Appl. Phys. Lett. 71, 19961998 (1997).Google Scholar
53.Park, S.-H.: Crystal orientation effects on many-body optical gain of wurtzite InGaN/GaN quantum well lasers. Jpn. J. Appl. Phys. 42, L170L172 (2003).Google Scholar
54.Sizov, D., Bhat, R., Wang, J., Allen, D., Paddock, B., and Zah, C.: Development of semipolar laser diode. Phys. Status Solidi 210, 459465 (2013).Google Scholar
55.David, A., Grundmann, M.J., Kaeding, J.F., Gardner, N.F., Mihopoulos, T.G., and Krames, M.R.: Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 92, 053502 (2008).Google Scholar
56.Brinkley, S.E., Lin, Y.-D., Chakraborty, A., Pfaff, N., Cohen, D., Speck, J.S., Nakamura, S., and DenBaars, S.P.: Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Appl. Phys. Lett. 98, 011110 (2011).Google Scholar
57.Yamada, H., Iso, K., Saito, M., Hirasawa, H., Fellows, N., Masui, H., Fujito, K., Speck, J.S., DenBaars, S.P., and Nakamura, S.: Comparison of InGaN/GaN light emitting diodes grown on m-plane and a-plane bulk GaN substrates. Phys. Status Solidi 2, 8991 (2008).Google Scholar
58.Melo, T., Hu, Y.L., Weisbuch, C., Schmidt, M.C., David, A., Ellis, B., Poblenz, C., Lin, Y.-D., Krames, M., and Raring, J.: Gain comparison in polar and nonpolar/semipolar gallium-nitride-based laser diodes. Semicond. Sci. Technol. 27, 024015 (2012).Google Scholar
59.Kelchner, K.M., Kuritzky, L.Y., Fujito, K., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Emission characteristics of single InGaN quantum wells on misoriented nonpolar m-plane bulk GaN substrates. J. Cryst. Growth 382, 8086 (2013).Google Scholar
60.Kelchner, K.M., Kuritzky, L.Y., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Stable vicinal step orientations in m-plane GaN. J. Cryst. Growth 411, 5662 (2015).Google Scholar
61.Kuritzky, L.Y., Myers, D.J., Nedy, J., Kelchner, K.M., Nakamura, S., DenBaars, S.P., Weisbuch, C., and Speck, J.S.: Electroluminescence characteristics of blue InGaN quantum wells on m-plane GaN “double miscut” substrates. Appl. Phys. Express 8, 061002 (2015).Google Scholar
62.Fischer, A.M., Wu, Z., Sun, K., Wei, Q., Huang, Y., Senda, R., Iida, D., Iwaya, M., Amano, H., and Ponce, F.A.: Misfit strain relaxation by stacking fault generation in InGaN quantum wells grown on m-plane GaN. Appl. Phys. Express 2, 041002 (2009).Google Scholar
63.Wu, F., Lin, Y.-D., Chakraborty, A., Ohta, H., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN. Appl. Phys. Lett. 96, 231912 (2010).Google Scholar
64.Zhao, Y., Yan, Q., Huang, C.-Y., Huang, S.-C., Hsu, P.S., Tanaka, S., Pan, C.-C., Kawaguchi, Y., Fujito, K., Van de Walle, C.G., Speck, J.S., DenBaars, S.P., Nakamura, S., and Feezell, D.: Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. Appl. Phys. Lett. 100, 201108 (2012).Google Scholar
65.Hsu, P.S.: Stress-relaxation in III-nitride based semipolar lasers. PhD dissertation, University of California, Santa Barbara (2013).Google Scholar
66.Hardy, M.T., Young, E.C., Shan Hsu, P., Haeger, D.A., Koslow, I.L., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Suppression of m-plane and c-plane slip through Si and Mg doping in partially relaxed (20–21) InGaN/GaN heterostructures. Appl. Phys. Lett. 101, 132102 (2012).Google Scholar
67.Nishizuka, K., Funato, M., Kawakami, Y., Fujita, S., Narukawa, Y., and Mukai, T.: Efficient radiative recombination from (11–22) -oriented InxGa1-xN multiple quantum wells fabricated by the regrowth technique. Appl. Phys. Lett. 85, 31223124 (2004).Google Scholar
68.Zhao, Y., Tanaka, S., Yan, Q., Huang, C.Y., Chung, R.B., Pan, C.C., Fujito, K., Feezell, D., Van De Walle, C.G., Speck, J.S., Denbaars, S.P., and Nakamura, S.: High optical polarization ratio from semipolar (20-2-1) blue-green InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 99, 051109 (2011).Google Scholar
69.Megalini, L., Becerra, D.L., Farrell, R.M., Pourhashemi, A., Speck, J.S., Nakamura, S., Denbaars, S.P., and Cohen, D.A.: Continuous-wave operation of a (20-2-1) InGaN laser diode with a photoelectrochemically etched current aperture. Appl. Phys. Express 8, 042701 (2015).Google Scholar
70.Wu, F., Zhao, Y., Romanov, A., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Stacking faults and interface roughening in semipolar (20-2-1) single InGaN quantum wells for long wavelength emission. Appl. Phys. Lett. 104, 151901 (2014).Google Scholar
71.Feezell, D.F., Schmidt, M.C., DenBaars, S.P., and Nakamura, S.: Development of nonpolar and semipolar InGaN/GaN visible light-emitting diodes. MRS Bull. 34, 318323 (2009).Google Scholar
72.Miyoshi, T., Masui, S., Okada, T., Yanamoto, T., Kozaki, T., Nagahama, S.I., and Mukai, T.: InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate. Phys. Status Solidi 207, 13891392 (2010).Google Scholar
73.Lutgen, S., Avramescu, A., Lermer, T., Queren, D., Müller, J., Bruederl, G., and Strauss, U.: True green InGaN laser diodes. Phys. Status Solidi 207, 13181322 (2010).Google Scholar
74.Avramescu, A., Lermer, T., Müller, J., Eichler, C., Bruederl, G., Sabathil, M., Lutgen, S., and Strauss, U.: True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN. Appl. Phys. Express 3, 061003 (2010).Google Scholar
75.Raring, J.W., Hall, E.M., Schmidt, M.C., Poblenz, C., Li, B., Pfister, N., Feezell, D.F., Craig, R., Speck, J.S., DenBaars, S.P., and Nakamura, S.: High-power high-efficiency continuous-wave InGaN laser diodes in the violet, blue, and green wavelength regimes. Proc. SPIE 7602, 760218 (2010).Google Scholar
76.Adachi, M., Yoshizumi, Y., Enya, Y., Kyono, T., Sumitomo, T., Tokuyama, S., Takagi, S., Sumiyoshi, K., Saga, N., Ikegami, T., Ueno, M., Katayama, K., and Nakamura, T.: Low threshold current density InGaN based 520–530 nm green laser diodes on semi-polar {20–21} free-standing GaN substrates. Appl. Phys. Express 3, 121001 (2010).Google Scholar
77.Yanashima, K., Nakajima, H., Tasai, K., Naganuma, K., Fuutagawa, N., Takiguchi, Y., Hamaguchi, T., Ikeda, M., Enya, Y., Takagi, S., Adachi, M., Kyono, T., Yoshizumi, Y., Sumitomo, T., Yamanaka, Y., Kumano, T., Tokuyama, S., Sumiyoshi, K., Saga, N., Ueno, M., Katayama, K., Ikegami, T., Nakamura, T.: Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar {20–21} GaN substrates. Appl. Phys. Express 5, 082103 (2012).Google Scholar
78.Avramescu, A., Lermer, T., Müller, J., Tautz, S., Queren, D., Lutgen, S., and Strauss, U.: InGaN laser diodes with 50 mW output power emitting at 515 nm. Appl. Phys. Lett. 95, 071103 (2009).Google Scholar
79.Tyagi, A., Farrell, M.R., Kelchner, K.M., Huang, C.Y., Hsu, P.S., Haeger, D.A., Hardy, M.T., Holder, C., Fujito, K., Cohen, D.A., Ohta, H., Speck, J.S., DenBaars, S.P., and Nakamura, S.: AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm. Appl. Phys. Express 3, 011002 (2010).Google Scholar
80.Lin, Y.-D., Yamamoto, S., Huang, C.Y., Hsiung, C.L., Wu, F., Fujito, K., Ohta, H., Speck, J.S., Denbaars, S.P., and Nakamura, S.: High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes. Appl. Phys. Express 3, 082001 (2010).Google Scholar
81.Hardy, M.T., Wu, F., Shan Hsu, P., Haeger, D.A., Nakamura, S., Speck, J.S., and DenBaars, S.P.: True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy. J. Appl. Phys. 114, 183101 (2013).Google Scholar
82.Masui, S., Miyoshi, T., Yanamoto, T., and Nagahama, S.: 1 W AlInGaN based green laser diodes. In Conf. Lasers Electro-Optics Pacific Rim, 2013; pp. 1–2.Google Scholar
83.Zhao, Y., Yan, Q., Feezell, D., Fujito, K., Van De Walle, C.G., Speck, J.S., Denbaars, S.P., and Nakamura, S.: Optical polarization characteristics of semipolar (30–31) and (30-3-1) InGaN/GaN light-emitting diodes. Opt. Express 21, A53A59 (2013).Google Scholar
84.Hsu, P.S., Young, E.C., Romanov, A.E., Fujito, K., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Misfit dislocation formation via pre-existing threading dislocation glide in (11–22) semipolar heteroepitaxy. Appl. Phys. Lett. 99, 081912 (2011).Google Scholar
85.Hsu, P.S., Hardy, M.T., Young, E.C., Romanov, A.E., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Stress relaxation and critical thickness for misfit dislocation formation in (10-10) and (30-3-1) InGaN/GaN heteroepitaxy. Appl. Phys. Lett. 100, 171917 (2012).Google Scholar
86.Wu, F., Young, E.C., Koslow, I., Hardy, M.T., Hsu, P.S., Romanov, A.E., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Observation of non-basal slip in semipolar InxGa1-xN/GaN heterostructures. Appl. Phys. Lett. 99, 251909 (2011).Google Scholar
87.Hsu, P.S., Hardy, M.T., Wu, F., Koslow, I., Young, E.C., Romanov, A.E., Fujito, K., Feezell, D.F., DenBaars, S.P., Speck, J.S., and Nakamura, S.: 444.9 nm semipolar (11–22) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer. Appl. Phys. Lett. 100, 021104 (2012).Google Scholar
88.Hardy, M.T., Nakamura, S., Speck, J.S., and DenBaars, S.P.: Suppression of relaxation in (20–21) InGaN/GaN laser diodes using limited area epitaxy. Appl. Phys. Lett. 101, 241112 (2012).Google Scholar
89.Hsu, P.S., Wu, F., Young, E.C., Romanov, A.E., Fujito, K., DenBaars, S.P., Speck, J.S., and Nakamura, S.: Blue and aquamarine stress-relaxed semipolar (11–22) laser diodes. Appl. Phys. Lett. 103, 161117 (2013).Google Scholar
90.Short, J.E.: How much media? 2013 Report on American consumers, 2013.Google Scholar
91.Grubor, J., Randel, S., Langer, K.-D., and Walewski, J.W.: Broadband information broadcasting using LED-based interior lighting. J. Lightw. Technol. 26, 38833892 (2008).Google Scholar
92.Mckendry, J.J.D., Massoubre, D., Zhang, S., Rae, B.R., Green, R.P., Gu, E., Henderson, R.K., Kelly, A.E., and Dawson, M.D.: Visible-light communications using a CMOS-controlled micro-light emitting-diode array. J. Lightw. Technol. 30, 6167 (2012).Google Scholar
93.Tsonev, D., Chun, H., Rajbhandari, S., McKendry, J.J.D., Videv, S., Gu, E., Haji, M., Watson, S., Kelly, A.E., Faulkner, G., Dawson, M.D., Haas, H., and O'Brien, D.: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technol. Lett. 26, 637640 (2014).Google Scholar
94.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H.: Optical gain and carrier lifetime of InGaN multiquantum well structure laser diodes. Appl. Phys. Lett. 69, 1568 (1996).Google Scholar
95.Watson, S., Tan, M., Najda, S.P., Perlin, P., Leszczynski, M., Targowski, G., Grzanka, S., and Kelly, A.: Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 38, 37923794 (2013).Google Scholar
96.Lee, C., Zhang, C., Cantore, M., Farrell, R.M., Oh, S., Margalith, T., Speck, J.S., Nakamura, S., Bowers, J.E., and DenBaars, S.P.: 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express 23, 1623216237 (2015).Google Scholar
97.Grobe, L., Paraskevopoulos, A., Hilt, J., Schulz, D., Lassak, F., Hartlieb, F., Kottke, C., Jungnickel, V., and Langer, K.-D.: High-speed visible light communication systems. IEEE Commun. Mag., December, 6066 (2013).Google Scholar
98.Neumann, A., Wierer, J.J., Davis, W., Ohno, Y., Brueck, S.R.J., and Tsao, J.Y.: Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982A990 (2011).CrossRefGoogle ScholarPubMed
99.Schubert, E.F. and Kim, J.K.: Solid-state light sources getting smart. Science 308, 12741279 (2005).Google Scholar
100.Berson, D.M., Dunn, F.A., and Takao, M.: Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073 (2002).Google Scholar
101.Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W.: Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 10651070 (2002).Google Scholar
102.Brainard, G.C., Sliney, D., Hanifin, J.P., Glickman, G., Byrne, B., Greeson, J.M., Jasser, S., Gerner, E., and Rollag, M.D.: Sensitivity of the human circadian system to short wavelength (420 nm) light. J. Biol. Rhythms 23, 379386 (2008).Google Scholar
103.Vosko, A.M., Colwell, C.S., and Avidan, A.Y.: Jet lag syndrome: Circadian organization, pathophysiology, and management strategies. Nat. Sci. Sleep 2, 187198 (2010).Google Scholar