Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T07:40:36.206Z Has data issue: false hasContentIssue false

Laser-assisted spalling of large-area semiconductor and solid state substrates

Published online by Cambridge University Press:  20 February 2018

Felix Kaule
Affiliation:
Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eissfeldt-Str. 12, 06120 Halle, Germany
Marko Swoboda
Affiliation:
Siltectra GmbH, Manfred-von-Ardenne-Ring 20, 01099 Dresden, Germany
Christian Beyer
Affiliation:
Siltectra GmbH, Manfred-von-Ardenne-Ring 20, 01099 Dresden, Germany
Ralf Rieske
Affiliation:
Siltectra GmbH, Manfred-von-Ardenne-Ring 20, 01099 Dresden, Germany
Anas Ajaj
Affiliation:
Siltectra GmbH, Manfred-von-Ardenne-Ring 20, 01099 Dresden, Germany
Wolfram D. Drescher
Affiliation:
Siltectra GmbH, Manfred-von-Ardenne-Ring 20, 01099 Dresden, Germany
Stephan Schoenfelder
Affiliation:
Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eissfeldt-Str. 12, 06120 Halle, Germany Leipzig University for Applied Science, Karl-Liebknecht-Str. 132, 04277 Leipzig, Germany
Jan Richter*
Affiliation:
Siltectra GmbH, Manfred-von-Ardenne-Ring 20, 01099 Dresden, Germany
*
Address all correspondence to Jan Richter at [email protected]
Get access

Abstract

Using kerf-free wafering technologies material losses in semiconductor manufacturing processes can be reduced drastically. By the use of externally applied stress, crystalline materials can be separated along crystal planes with clearly defined thickness. Nevertheless, during this process striations caused by the crack propagation occur. These crack growth features are river and Wallner lines. In this work, we demonstrate a process for spalling that scales favorably for large-area semiconductor substrates with a diameter up to 300 mm. To get rid of the crack growth features, a laser-conditioning process with a high numerical aperture at photon energies below the material bandgap energy, using multi-photon effects is utilized. The process affords a surface roughness Ra after spalling of <1 µm.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henley, F.J.: Kerf-free wafering: technology overview and challenges for thin PV manufacturing. IEEE PVSC 35, 1184 (2010).Google Scholar
2. Martini, R., Gonzalez, M., Dross, F., Masolin, A., Vaes, J., Frederickx, D., and Poortmans, J.: Epoxy-induced spalling of Silicon. Energy Procedia 27, 567 (2012).Google Scholar
3. Kwon, Y., Yang, C., Yoon, S.-H., Um, H.-D., Lee, J.-H., and Yoo, B.: Spalling of a thin Si layer by electrodeposit-assisted stripping. Appl. Phys. Express 6, 116502 (2013).Google Scholar
4. Bedell, S.W., Shahrjerdi, D., Hekmatshoar, B., Fogel, K., Lauro, P.A., Ott, J.A., Sosa, N., and Sadana, D.: Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2, 141 (2012).Google Scholar
5. Tanielian, M., Blackstone, S., and Lajos, R.: A new technique of forming thin free standing single-crystal films. J. Electrochem. Soc. 132, 507 (1985).CrossRefGoogle Scholar
6. Dross, F., Robbelein, J., Vandevelde, B., Van Kerschaver, E., Gordon, I., Beaucarne, G., and Poortmans, J.: Stress-induced large-area lift-off of crystalline Si films. Appl. Phys. A 89, 149 (2007).Google Scholar
7. Niepelt, R., Hensen, J., Knorr, A., Steckenreiter, V., Kajari-Schroeder, S., and Brendel, R.: High-quality exfoliated crystalline silicon foils for solar cell applications. Energy Procedia 55, 570 (2014).Google Scholar
8. Bedell, S.W., Shahrjerdi, D., Hekmatshoartabari, B., Fogel, K., Lauro, P., Sosa, N., and Sadana, D.: Kerf-less removal of Si, Ge and III-V layers by controlled spalling to enable low-cost. IEEE PSC 37, 141 (2011).Google Scholar
9. Bedell, S.W., Fogel, K., Lauro, P.A., Shahrjerdi, D., Ott, J.A., and Sadana, D.: Layer transfer by controlled spalling. J. Phys. D 46, 152002 (2013).CrossRefGoogle Scholar
10. Bellanger, P. and Serra, J.: Room temperature spalling of thin silicon foils using a Kerfless technique. Energy Procedia 55, 873 (2014).CrossRefGoogle Scholar
11. Niepelt, R., Hensen, J., Steckenreiter, V., Brendel, R., and Kajari-Schröder, S.: Kerfless exfoliated thin crystalline Si wafers with Al metallization layers for solar cells. J. Mater. Res. 30(21), 3227 (2015).Google Scholar
12. Hull, D.: Fractography Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
13. Schoenfelder, S., Breitenstein, O., Rissland, S., De Donno, R., and Bagdahn, J.: Kerfless wafering for silicon wafers by using a reusable metal layer. Energy Procedia 38, 942 (2013).CrossRefGoogle Scholar