Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T07:40:23.307Z Has data issue: false hasContentIssue false

Intrinsically low-resistance carbon nanotube-metal contacts mediated by topological defects

Published online by Cambridge University Press:  13 July 2012

Han Seul Kim
Affiliation:
Graduate School of EEWS, KAIST, Daejeon 305-701, Korea
Ga In Lee
Affiliation:
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea
Hu Sung Kim
Affiliation:
Graduate School of EEWS, KAIST, Daejeon 305-701, Korea
Jeung Ku Kang*
Affiliation:
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea, Graduate School of EEWS, KAIST, Daejeon 305-701, Korea
Yong-Hoon Kim*
Affiliation:
Graduate School of EEWS, KAIST, Daejeon 305-701, Korea, KAIST Institute for the NanoCentury, KAIST, Daejeon 305-701, Korea
*
Address all correspondence to Yong-Hoon Kim and Jeung Ku Kang at[email protected] and [email protected]
Address all correspondence to Yong-Hoon Kim and Jeung Ku Kang at[email protected] and [email protected]
Get access

Abstract

Applying a first-principles computational approach, we study the electronic and charge transport properties of the interfaces between metals and capped carbon nanotubes (CNTs) with various arrangements of topological defects. Observing the length scaling of resistance, we first show that capped CNTs exhibit only one CNT-body-determined low-slope scaling and the resulting very low long-length-limit resistance. The intrinsically low resistance (absence of Schottky-barrier-dominated high-slope scaling) of capped CNTs is next analyzed by the local density of states, which shows the formation of unusual propagating-type metal-induced gap states originating from the topological defect states that are well connected with CNT edge and body states.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tans, S.J., Verschueren, A.R.M., and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).Google Scholar
2.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
3.Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424, 654 (2003).Google Scholar
4.Franklin, A.D. and Chen, Z.: Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858 (2010).CrossRefGoogle ScholarPubMed
5.Svensson, J. and Campbell, E.E.B.: Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110, 111101 (2011).Google Scholar
6.Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P.: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).Google Scholar
7.Vitale, V., Curioni, A., and Andreoni, W.: Metal-carbon nanotube contacts: The link between Schottky barrier and chemical bonding. J. Am. Chem. Soc. 130, 5848 (2008).Google Scholar
8.Zhang, Y., Franklin, N., Chen, R., and Dai, H.: Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 331, 35 2000).Google Scholar
9.Kim, Y.-H. and Byun, Y.M.: Diameter dependence of charge transport across carbon nanotube-metal contacts from first principles. J. Kor. Phys. Soc. 55, 299 (2009).Google Scholar
10.Kim, Y.-H. and Kim, H.S.: Anomolous length scaling of carbon nanotube-metal contact resistance: An ab initio study. Appl. Phys. Lett. 100, 213113 (2012).Google Scholar
11.Brinkmann, G., Fowler, P.W., Manolopoulos, D.E., and Palser, A.H.R.: A census of nanotube caps. Chem. Phys. Lett. 315, 335 (1999).Google Scholar
12.Reich, S., Li, L., and Robertson, J.: Structure and formation energy of carbon nanotube caps. Phys. Rev. B 72, 165423 (2005).CrossRefGoogle Scholar
13.Khazaei, M., Dean, K.A., Farajian, A.A., and Kawazoe, Y.: Field emission signature of pentagons at carbon nanotube caps. J. Phys. Chem. C 111, 6690 (2007).CrossRefGoogle Scholar
14.Palacios, J.J., Tarakeshwar, P., and Kim, D.M.: Metal contacts in carbon nanotube field effect transistors: Beyond the Schottky barrier paradigm. Phys. Rev. B 77, 113403 (2008).Google Scholar
15.Adessi, C., Avriller, R., Blase, X., Bournel, A., d'Honincthun, H.C., Dollfus, P., Fregonese, S., Galdin-Retailleau, S., Lopez-Bezanilla, A., Maneux, C., Nguyen, H.N., Querlioz, D., Roche, S., Triozon, F., and Zimmer, T.: Multiscale simulation of carbon nanotube devices. C. R. Physique 10, 305 (2009).CrossRefGoogle Scholar
16.Mann, D., Javey, A., Kong, J., Wang, Q., and Dai, H.J.: Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541 (2003).CrossRefGoogle Scholar
17.Nosho, Y., Ohno, Y., Kishimoto, S., and Mizutani, T.: Evidence of edge conduction at nanotube/metal contact in carbon nanotube devices. Jpn. J. Appl. Phys. 46, L474 (2007).Google Scholar
18.Kim, Y.-H., Tahir-Kheli, J., Schultz, P.A., and Goddard, W.A. III: First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices. Phys. Rev. B 73, 235419 (2006).Google Scholar
19.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
20.SeqQuest Project (ver. 2.4), Sandia National Laboratories (http://dft.sandia.gov/Quest).Google Scholar
21.Datta, S.: Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, England, 2005).Google Scholar
22.Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).Google Scholar
23.Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).Google Scholar
24.Kawai, T., Miyamoto, Y., Sugino, O., and Koga, Y.: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B 62, R16349 (2000).Google Scholar
25.Lee, G.I., Kang, J.K., and Kim, Y.-H.: Metal-Independent coherent electron tunneling through polymerized fullerene chains. J. Phys. Chem. C 112, 7029 (2008).Google Scholar
Supplementary material: File

Kim et al. supplementary material

Supplementary data

Download Kim et al. supplementary material(File)
File 822.3 KB