Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T07:44:58.920Z Has data issue: false hasContentIssue false

Interstitial versus substitutional metal insertion in V2O5 as post-lithium ion battery cathode: a comparative GGA/GGA + U study with localized bases

Published online by Cambridge University Press:  22 May 2020

Daniel Koch*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore117576, Singapore
Sergei Manzhos*
Affiliation:
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, QCJ3X1S2, Canada
*
Address all correspondence to Daniel Koch at [email protected] and Sergei Manzhos at [email protected]
Address all correspondence to Daniel Koch at [email protected] and Sergei Manzhos at [email protected]
Get access

Abstract

The generalized gradient approximation (GGA) often fails to correctly describe the electronic structure and thermochemistry of transition metal oxides and is commonly improved using an inexpensive correction term with a scaling parameter U. The authors tune U to reproduce experimental vanadium oxide redox energetics with a localized basis and a GGA functional. The value for U is found to be significantly lower than what is generally reported with plane-wave bases, with the uncorrected GGA results being already in reasonable agreement with experiments. This computational set-up is used to calculate interstitial and substitutional insertion energies of main group metals in vanadium pentoxide and interstitial doping is found to be thermodynamically favored.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amatucci, G.G., Badway, F., Singhal, A., Beaudoin, B., Skandan, G., Bowmer, T., Plitz, I., Pereira, N., Chapman, T., and Jaworski, R.: Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc. 148, A940 (2001).CrossRefGoogle Scholar
Delmas, C., Cognac-Auradou, H., Cocciantelli, J.M., Ménétrier, M., and Doumerc, J.P.: The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ion 69, 257 (1994).CrossRefGoogle Scholar
Gershinsky, G., Yoo, H.D., Gofer, Y., and Aurbach, D.: Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964 (2013).CrossRefGoogle ScholarPubMed
Liu, S., Tong, Z., Zhao, J., Liu, X., wang, J., Ma, X., Chi, C., Yang, Y., Liu, X., and Li, Y.: Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 18, 25645 (2016).CrossRefGoogle ScholarPubMed
Wang, H., Bai, Y., Chen, S., Luo, X., Wu, C., Wu, F., Lu, J., and Amine, K.: Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interface 7, 80 (2015).CrossRefGoogle ScholarPubMed
Chain, E.E.: Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl. Opt. 30, 2782 (1991).CrossRefGoogle ScholarPubMed
Meyer, J., Zilberberg, K., Riedl, T., and Kahn, A.: Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials. J. Appl. Phys. 110, 033710 (2011).CrossRefGoogle Scholar
Suthirakun, S., Genest, A., and Rösch, N.: Modeling polaron-coupled Li cation diffusion in V2O5 cathode material. J. Phys. Chem. C 122, 150 (2018).CrossRefGoogle Scholar
Hu, B., Li, L., Xiong, X., Liu, L., Huang, C., Yu, D., and Chen, C.: High-performance of copper-doped vanadium pentoxide porous thin films cathode for lithium-ion batteries. J. Solid State Electrochem. 23, 1315 (2019).CrossRefGoogle Scholar
Jin, A., Chen, W., Zhu, Q., Yang, Y., Volkov, V.L., and Zakharova, G.S.: Structural and electrochromic properties of molybdenum doped vanadium pentoxide thin films by sol–gel and hydrothermal synthesis. Thin Solid Films 517, 2023 (2009).CrossRefGoogle Scholar
Whittingham, M.S., Siu, C., and Ding, J.: Can multielectron intercalation reactions be the basis of next generation batteries? Acc. Chem. Res. 51, 258 (2018).CrossRefGoogle ScholarPubMed
Lüder, J., Legrain, F., Chen, Y., and Manzhos, S.: Doping of active electrode materials for electrochemical batteries: An electronic structure perspective. MRS Commun. doi: 10.1557/mrc.2017.69, Published online 14 August 2017.Google Scholar
Jovanović, A., Dobrota, A.S., Rafailović, L.D., Mentus, S.V., Pašti, I.A., Johansson, B., and Skorodumova, N.V.: Structural and electronic properties of V2O5 and their tuning by doping with 3d elements – modelling using the DFT + U method and dispersion correction. Phys. Chem. Chem. Phys.20, 13934 (2018).CrossRefGoogle ScholarPubMed
Koch, D. and Manzhos, S.: Can Doping of Transition Metal Oxide Cathode Materials Increase Achievable Voltages with Multivalent Metals? ChemRxiv (2019) Preprint. doi:10.26434/chemrxiv.10050575.v1.Google Scholar
Giorgetti, M., Berrettoni, M., and Smyrl, W.H.: Doped V2O5-based cathode materials: Where does the doping metal go? An X-ray absorption spectroscopy study. Chem. Mater. 19, 5991 (2007).CrossRefGoogle Scholar
McColl, K., Johnson, I., and Corà, F.: Thermodynamics and defect chemistry of substitutional and interstitial cation doping in layered α-V2O5. Phys. Chem. Chem. Phys. 20, 15002 (2018).CrossRefGoogle ScholarPubMed
Chen, S. and Wang, L.-W.: Double-hole-induced oxygen dimerization in transition metal oxides. Phys. Rev. B 89, 014109 (2014).CrossRefGoogle Scholar
Wang, L., Maxisch, T., and Ceder, G.: Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
Koch, D. and Manzhos, S.: Ab initio modeling and design of vanadia-based electrode materials for post-lithium batteries. J. Phys. D: Appl. Phys. 53, 083001 (2019).CrossRefGoogle Scholar
Polo, V., Kraka, E., and Cremer, D.: Electron correlation and the self-interaction error of density functional theory. Mol. Phys. 100, 1771 (2002).CrossRefGoogle Scholar
Hautier, G., Ong, S.P., Jain, A., Moore, C.J., and Ceder, G.: Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85, 155208 (2012).CrossRefGoogle Scholar
Lutfalla, S., Shapovalov, V., and Bell, A.T.: Calibration of the DFT/GGA +U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 7, 2218 (2011).CrossRefGoogle ScholarPubMed
Jang, D.M., Kwak, I.H., Kwon, E.L., Jung, C.S., Im, H.S., Park, K., and Park, J.: Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 119, 1921 (2015).CrossRefGoogle Scholar
Gautam, G.S., Canepa, P., Malik, R., Liu, M., Persson, K., and Ceder, G.: First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 51, 13619 (2015).CrossRefGoogle ScholarPubMed
Suthirakun, S., Jungthawan, S., and Limpijumnong, S.: Effect of Sn-doping on behavior of Li-intercalation in V2O5 cathode materials of Li-ion batteries: A computational perspective. J. Phys. Chem. C 122, 5896 (2018).CrossRefGoogle Scholar
Urban, A., Seo, D.-H., and Ceder, G.: Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).CrossRefGoogle Scholar
Van de Walle, C.G. and Neugebauer, J.: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).CrossRefGoogle Scholar
Verrelli, R., Black, A.P., Pattanathummasid, C., Tchitchekova, D.S., Ponrouch, A., Oró-Solé, J., Frontera, C., Bardé, F., Rozier, P., and Palacín, M.R.: On the strange case of divalent ions intercalation in V2O5. J. Power Sources 407, 162 (2018).CrossRefGoogle Scholar
Jain, A., Hautier, G., Ong, S.P., Moore, C.J., Fischer, C.C., Persson, K.A., and Ceder, G.: Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).CrossRefGoogle Scholar
Supplementary material: PDF

Koch and Manzhos supplementary material

Koch and Manzhos supplementary material

Download Koch and Manzhos supplementary material(PDF)
PDF 975 KB