Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T10:34:48.204Z Has data issue: false hasContentIssue false

Interface effects on self-forming rechargeable Li/I2-based solid state batteries

Published online by Cambridge University Press:  26 April 2019

Alyson Abraham
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
Mikaela R. Dunkin
Affiliation:
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
Jianping Huang
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
Bingjie Zhang
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
Kenneth J. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
Esther S. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
Amy C. Marschilok*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
*
Address all correspondence to Amy C. Marschilok at [email protected]
Get access

Abstract

Solid state batteries are an emerging alternative to traditional liquid electrolyte cells that provide potential for safe and high-energy density power sources. This report describes a self-forming, solid state battery based on the Li/I2 couple using an LiI-rich LiI(3-hydroxypropionitrile)2 electrolyte (LiI–LiI(HPN)2). As the negative and positive active materials are generated in situ, the solid electrolyte–current collector interfaces play a critical role in determining the electrochemical response of the battery. Herein, we report the investigation of solid electrolyte–current collector interfaces with a self-forming LiI–LiI(HPN)2 solid electrolyte and the role of varying interface design in reducing resistance during cycling.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zhang, Z., Shao, Y., Lotsch, B., Hu, Y.-S., Li, H., Janek, J., Nazar, L. F., Nan, C.-W., Maier, J., Armand, M., and Chen, L.: New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945 (2018).Google Scholar
2.Xu, H., Li, Y., Zhou, A., Wu, N., Xin, S., Li, Z., and Goodenough, J.B.: Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 18, 7414 (2018).Google Scholar
3.Luo, W., Gong, Y., Zhu, Y., Li, Y., Yao, Y., Zhang, Y., Fu, K.K., Pastel, G., Lin, C.F., Mo, Y., Wachsman, E.D., and Hu, L.: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-Metal anode by a Germanium layer. Adv. Mater. 29, 1606042 (2017).Google Scholar
4.Alexander, G.V., Rosero-Navarro, N.C., Miura, A., Tadanaga, K., and Murugan, R.: Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. J. Mater. Chem. A 6, 21018 (2018).10.1039/C8TA07652AGoogle Scholar
5.Han, X., Gong, Y., Fu, K.K., He, X., Hitz, G.T., Dai, J., Pearse, A., Liu, B., Wang, H., Rubloff, G., Mo, Y., Thangadurai, V., Wachsman, E.D., and Hu, L.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2017).Google Scholar
6.Weinstein, L., Yourey, W., Gural, J., and Amatucci, G.G.: Electrochemical impedance spectroscopy of electrochemically self-assembled lithium–iodine batteries. J. Electrochem. Soc. 155, A590 (2008).Google Scholar
7.Yourey, W., Weinstein, L., Halajko, A., and Amatucci, G.G.: Pathways to enabling solid state electrolytically formed batteries: the solid electrolyte interphase. Electrochim. Acta 66, 193 (2012).Google Scholar
8.Yourey, W., Weinstein, L., Halajko, A., and Amatucci, G.G.: Electrode development in a novel self-assembled lithium iodide battery. ECS Trans. 28, 159 (2010).10.1149/1.3505469Google Scholar
9.Abraham, A., Huang, J., Smith, P.F., Marschilok, A.C., Takeuchi, K.J., and Takeuchi, E.S.: Communication—demonstration and electrochemistry of a self-forming solid state rechargeable LiI(HPN)2 based Li/I2 battery. J. Electrochem. Soc. 165, A2115 (2018).Google Scholar
10.Wang, H.X., Wang, Z.X., Li, H., Meng, Q.B., and Chen, L.Q.: Ion transport in small-molecule electrolytes based on LiI/3-hydroxypropionitrile with high salt contents. Electrochim. Acta 52, 2039 (2007).Google Scholar
11.Wang, H., Li, H., Xue, B., Wang, Z., Meng, Q., and Chen, L.: Solid-state composite electrolyte LiI/3-Hydroxypropionitrile/SiO2 for dye-sensitized solar cells. J. Am. Chem. Soc. 127, 6394 (2005).Google Scholar
12.Liu, F.-C., Shadike, Z., Ding, F., Sang, L., and Fu, Z.-W.: Preferential orientation of I2–LiI(HPN)2 film for a flexible all-solid-state rechargeable lithium–iodine paper battery. J. Power Sources 274, 280 (2015).10.1016/j.jpowsour.2014.10.057Google Scholar
13.Liu, F.-C., Liu, W.-M., Zhan, M.-H., Fu, Z.-W., and Li, H.: An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I ion electrolyte. Energy Environ. Sci. 4, 1261 (2011).Google Scholar
Supplementary material: PDF

Abraham et al. supplementary material

Abraham et al. supplementary material 1

Download Abraham et al. supplementary material(PDF)
PDF 556.3 KB