Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T07:45:56.788Z Has data issue: false hasContentIssue false

In-situ transmission electron microscopy studies of the crystallization of N-doped Ge-rich GeSbTe materials

Published online by Cambridge University Press:  22 August 2018

Marta Agati
Affiliation:
CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse, France
François Renaud
Affiliation:
CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse, France
Daniel Benoit
Affiliation:
STMicroelectronic, 850 Rue Jean Monnet, 38920 Crolles, France
Alain Claverie*
Affiliation:
CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse, France
*
Address all correspondence to Alain Claverie at [email protected]
Get access

Abstract

We have studied by electron microscopy and x-ray diffraction techniques the amorphous-to-crystalline phase transition which occurs during annealing of a highly Ge-rich and N-doped amorphous GeSbTe material. The crystallization onset occurs at 380 °C with the diffusion and segregation of Ge followed by the formation of Ge nanocrystals. The GeSbTe face-centered cubic (FCC) crystalline phase only appears at 400 °C. Phase separation occurs because the Ge concentration is well above what can be accommodated by the Ge2Sb2Te5 lattice. The possible formation of a two-phase material should be considered in order to simulate device characteristics and optimize material composition for electronic memory applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wuttig, M. and Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).Google Scholar
2.Wełnic, W. and Wuttig, M.: Reversible switching in phase-change materials. Mater. Today 11, 20 (2008).Google Scholar
3.Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., and Wuttig, M.: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130 (2000).Google Scholar
4.Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C., and Wuttig, M.: Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202208 (2011).Google Scholar
5.Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., and Elliott, S.R.: Breaking the speed limits of phase-change memory. Science 336, 1566 (2012).Google Scholar
6.Zhu, M., Xia, M., Rao, F., Li, X., Wu, L., Ji, X., Lv, S., Song, Z., Feng, S., Sun, H., and Zhang, S.: One order of magnitude faster phase change at reduced power in Ti-Sb-Te. Nat. Commun. 5, 4086 (2014).Google Scholar
7.Kim, I.S., Cho, S.L., Im, D.H., Cho, E.H., Kim, D.H., Oh, G.H., Ahn, D.H., Park, S.O., Nam, S.W., Moon, J.T., and Chung, C.H.: High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications (Symp. on VLSI Tech. Dig., IEEE, 2010), p. 203.Google Scholar
8.Cheng, H.Y., Chien, W.C., BrightSky, M., Ho, Y.H. , Zhu, Y., Ray, A., Bruce, R., Kim, W., Yeh, C.W., Lung, H.L., and Lam, C.: Novel Fast-switching and High-data Retention Phase-change Memory Based on New Ga–Sb–Ge Material (Electron Devices Meeting (IEDM), IEEE International, 2015), 3.5.1–3.5.4.Google Scholar
9.Mantegazza, D., Ielminia, D., Pirovano, A., Lacaita, A.L., Varesi, E., Pellizzer, F., and Bez, R.: Explanation of programming distributions in phase-change memory arrays based on crystallization time statistics. Solid-State Electron. 52, 584 (2008).Google Scholar
10.Giusca, C.E., Stolojan, V., Sloan, J., Börrnert, F., Shiozawa, H., Sader, K., Rümmeli, M.H., Büchner, B., Ravi, S., and Silva, P.: Confined crystals of the smallest phase-change material. Nano Lett. 13, 4020 (2013).Google Scholar
11.Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R.S.: Phase change memory technology. J. Vac. Sci. Technol. B 28, 223262 (2010).Google Scholar
12.Bragaglia, V., Arciprete, F., Zhang, W., Mio, A.M., Zallo, E., Perumal, K., Giussani, A., Cecchi, S., Boschker, J.E., Riechert, H., Privitera, S., Rimini, E., Mazzarello, R., and Calarco, R.: Metal–insulator transition driven by vacancy ordering in GeSbTe phase change materials. Sci. Rep. 6, 28843 (2016).Google Scholar
13.Zheng, Y., Cheng, Y., Huang, R., Qi, R., Rao, F., Ding, K., Yin, W., Song, S., Liu, W., Song, Z., and Feng, S.: Surface energy driven cubic-to-hexagonal grain growth of Ge2Sb2Te5 thin film. Sci. Rep. 7, 5915 (2017).Google Scholar
14.Aoukar, M.: Dépôt de matériaux à changement de phase par PE-MOCVD à injection liquide pulsée pour des applications mémoires PCRAM. PhD Thesis, University of Grenoble Alpes, 2015.Google Scholar
15.Kim, K.H., Chung, J.G., Kyoung, Y.K., Park, J.C., and Choi, S.J.: Phase-change characteristics of nitrogen-doped Ge2Sb2Te5 films during annealing process. J. Mater. Sci.: Mater. Electron. 22, 5255 (2011).Google Scholar
16.Navarro, G., Sousa, V., Noe, P., Castellani, N., Coue, M., Kluge, J., Kiouseloglou, A., Sabbione, C., Persico, A., Roule, A., Cueto, O., Blonkowski, S., Fillot, F., Bernier, N., Annunziata, R., Borghi, M., Palumbo, E., Zuliani, P., and Perniola, L.: N-doping impact in optimized Ge-rich materials based phase-change memory (8th IEEE Int. Non-volatile Memory Workshop, 2016), p. 1.Google Scholar
17.Zhou, X., Xia, M., Rao, F., Wu, L., Li, X., Song, Z., Feng, S., and Sun, H.: Understanding phase-change behaviors of carbon-doped Ge2Sb2Te5 for phase-change memory application. ACS Appl. Mater. Interfaces 6, 14207 (2014).Google Scholar
18.Jeong, T.H., Seo, H., Lee, K.L., Choi, S.M., Kim, S.J., and Kim, S.Y.: Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength. Jpn J. Appl. Phys. 40, 1609 (2001).Google Scholar
19.Lazarenko, P., Nguyena, H.P., Kozyukhina, S., and Sherchenkov, A.: Influence of Bi doping on electrical and optical properties of phase change material Ge2Sb2Te5. J. Optoelectron. Adv. Mater. 13, 1400 (2011).Google Scholar
20.Choi, K-J., Yoon, S-M., Lee, N-Y., Lee, S-Y., Park, Y-S., Yu, B-G., and Ryu, S-O.: The effect of antimony-doping on Ge2Sb2Te5, a phase change material. Thin Solid Films 516, 8810 (2008).Google Scholar
21.Sousa, V., Navarro, G., Castellani, N., Coué, M., Cueto, O., Sabbione, C., Noé, P., Perniola, L., Blonkowski, S., Zuliani, P., and Annunziata, R.: Operation fundamentals in 12 Mb Phase Change Memory based on innovative Ge-rich GST materials featuring high reliability performance (Symp. on VLSI Tech. Dig., IEEE, 2015), p. 98.Google Scholar
22.Kiouseloglou, A., Navarro, G., Sousa, V., Persico, A., Roule, A., Cabrini, A., Torelli, G., Maitrejean, S., Reimbold, G., De Salvo, B., Clermidy, F., and Perniola, L.: A novel programming technique to boost low-resistance state performance in Ge-Rich GST phase change memory. IEEE Trans. Electron Devices 61, 1246 (2014).Google Scholar
23.Yoon, S-M., Choi, K-J., Lee, N-Y., Lee, S-Y., Park, Y-S., and Yu, B-G.: Nanoscale observations of the operational failure for phase-change-type nonvolatile memory devices using Ge2Sb2Te5 chalcogenide thin films. Appl. Surf. Sci. 254, 316 (2007).Google Scholar
24.Padilla, A., Burra, G.W., Rettner, C.T., Topuria, T., Rice, P.M., Jackson, B., Virwani, K., Kellock, A.J., Dupouy, D., Debunne, A., Shelby, R.M., Gopalakrishnan, K., Shenoy, R.S., and Kurdi, B.N.: Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices. J. Appl. Phys. 110, 054501 (2001).Google Scholar
25.Park, J-B., Park, G-S., Baik, H-S., Lee, J-H., Jeong, H., and Kim, K.: Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory. J. Electrochem. Soc. 154, H139H141 (2007).Google Scholar
26.Crespi, L., Lacaita, A., Boniardi, M., Varesi, E., Ghetti, A., Redaelli, A., and D'Arrigo, G.: Modeling of Atomic Migration Phenomena in Phase Change Memory Devices (Proc. IEEE Int. Memory Workshop (IMW), 2015), p. 1.Google Scholar
27.Privitera, S., Sousa, V., Bongiorno, C., Navarro, G., Sabbione, C., Carria, E., and Rimini, E.: Atomic diffusion in laser irradiated Ge-rich GeSbTe thin films for phase change memory applications. J. Phys. D: Appl. Phys. 51, 145103 (2018).Google Scholar
28.Carria, E., Mio, A.M., Gibilisco, S., Miritello, M., Bongiorno, C., Grimaldi, M.G., and Rimini, E.: Amorphous-crystal phase transitions in GexTe1-x alloys. J. Electrochem. Soc. 159, H130H139 (2012).Google Scholar
29.Zuliani, P., Varesi, E., Palumbo, E., Borghi, M., Tortorelli, I., Erbetta, D., Dalla Libera, G., Pessina, N., Gandolfo, A., Prelini, C., Ravazzi, L., and Annunziata, R.: Overcoming temperature limitations in phase change memories with optimized GexSbyTez. IEEE Trans. Electron Devices 60, 4020 (2013).Google Scholar
30.Noé, P., Vallée, C., Hippert, F., Fillot, F., and Raty, J-Y.: Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues. Semicond. Sci. Technol. 33, 013002 (2018).Google Scholar
Supplementary material: File

Agati et al. supplementary material

Agati et al. supplementary material 1

Download Agati et al. supplementary material(File)
File 37 MB