Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T07:43:21.119Z Has data issue: false hasContentIssue false

In-silico screening of Pt-based bimetallic alloy catalysts using ab initio microkinetic modeling for non-oxidative dehydrogenation of ethanol to produce acetaldehyde

Published online by Cambridge University Press:  29 January 2019

Fatima Jalid
Affiliation:
Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India Department of Chemical Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir 190006, India
Tuhin S. Khan*
Affiliation:
Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
M. Ali Haider*
Affiliation:
Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
*
Address all correspondence to Tuhin S. Khan and M. Ali Haider at [email protected] and [email protected]
Address all correspondence to Tuhin S. Khan and M. Ali Haider at [email protected] and [email protected]
Get access

Abstract

Ab initio microkinetic modeling was performed to study ethanol conversion to acetaldehyde on Pt-based bimetallic alloys in a non-oxidative environment. Alloying Pt with Au, Ag, Cu, Co, Ni, Zn, Cd, Al, Ga, In, Tl, Ge, Sn, Pb, As, and Sb showed an increase in product turnover by at least an order of magnitude compared with Pt at 423 K. This was correlated to the increased stabilization of CH3CHO species over these alloys. Among the alloy candidates; Pt3Cu, Pt3Zn, Pt3Ga, Pt3Ge, Pt3Sb, and Pt3Pb were found to be more active than Pt.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equal first author contribution.

References

1.Shan, J., Janvelyan, N., Li, H., Liu, J., Egle, T.M., Ye, J., Biener, M.M., Biener, J., Friend, C.M. and Flytzani-Stephanopoulos, M.: Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute Nicu alloys. Appl. Catal. B Environ. 205, 541550 (2017).Google Scholar
2.Church, J.M. and Joshi, H.K.: Acetaldehyde by dehydrogenation of ethyl alcohol. Ind. Eng. Chem. 43, 18041811 (1951).Google Scholar
3.Shan, J., Lucci, F.R., Liu, J., El-Soda, M., Marcinkowski, M.D., Allard, L.F., Sykes, E.C.H. and Flytzani-Stephanopoulos, M.: Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen. Surf. Sci. 650, 121129 (2016).Google Scholar
4.Wang, Z.T., Hoyt, R.A., El-Soda, M., Madix, R.J., Kaxiras, E. and Sykes, E.C.H.: Dry dehydrogenation of ethanol on Pt–Cu single atom alloys. Top. Catal. 61, 328335 (2018).Google Scholar
5.Kon, K., Hakim Siddiki, S.M.A. and Shimizu, K.I.: Size- and support-dependent Pt nanocluster catalysis for oxidant-free dehydrogenation of alcohols. J. Catal. 2013, 304, 6371 (2013).Google Scholar
6.Moromi, S.K., Hakim Siddiki, S.M.A., Ali, M.A., Kon, K. and Shimizu, K.: Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts. Catal. Sci. Technol. 4, 36313635 (2014).Google Scholar
7.Reddy, G.K. and Rao, P.K.: Vapour phase dehydrogenation of cyclohexanol over alumina-supported Pt-co bimetallic catalysts. Catal. Lett. 45, 9396 (1997).Google Scholar
8.Lausche, A.C., Hummelshoj, J.S., Abild-Pedersen, F., Studt, F. and Norskov, J.K.: Application of a new informatics tool in heterogeneous catalysis: analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. J. Catal. 291, 133137 (2012).Google Scholar
9.Khan, T. S., Jalid, F., and Haider, M. A.: First-principle microkinetic modeling of ethanol dehydrogenation on metal catalyst surfaces in non-oxidative environment: design of bimetallic alloys. Top. Catal. 61, 18201831 (2018).Google Scholar
10.De Cola, P.L., Gläser, R. and Weitkamp, J.: Non-oxidative propane dehydrogenation over Pt-Zn-containing zeolites. Appl. Catal. A Gen. 306, 8597 (2006).Google Scholar
11.Ma, Z., Wu, Z. and Miller, J.T.: Effect of Cu content on the Bimetallic Pt–Cu catalysts for propane dehydrogenation. Catal. Struct. React. 3, 4353 (2017).Google Scholar
12.Cortright, R.D. and Dumesic, J.A.: Microcalorimetric, spectroscopic, and kinetic studies of silica supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J. Catal. 148, 771778 (1994).Google Scholar
13.Medford, A.J., Shi, C., Hoffmann, M.J., Lausche, C., Fitzgibbon, S.R., Bligaard, T. and Nørskov, J.K.: CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Lett. 145, 794807 (2015).Google Scholar
14.Studt, F., Abild-pedersen, F., Wu, Q., Jensen, A.D., Temel, B., Grunwaldt, D. and Nørskov, J.K.: CO hydrogenation to methanol on Cu – Ni catalysts: theory and experiment. J. Catal. 293, 5160 (2012).Google Scholar
15.Xu, Y., Lausche, A.C., Wang, S., Khan, T.S., Abild-Pedersen, F., Studt, F., Nørskov, J.K. and Bligaard, T.: In silico search for novel methane steam reforming catalysts. New J. Phys. 15, 125021 (2013).Google Scholar
16.Jalid, F., Khan, T.S., Mir, F.Q. and Haider, M.A.: Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface. J. Catal. 353, 265273 (2017).Google Scholar
17.Khan, T.S., Hussain, S., Anjum, U. and Haider, M.A.: In-silico screening of metal and bimetallic alloy catalysts for sofc anode at high, intermediate and low temperature operations. Electrochim. Acta 281, 654664 (2018).Google Scholar
18.Silvestre-Albero, J., Serrano-Ruiz, J.C., Sepúlveda-Escribano, A. and Rodríguez-Reinoso, F.: Modification of the catalytic behaviour of platinum by zinc in crotonaldehyde hydrogenation and iso-butane dehydrogenation. Appl. Catal. A Gen. 292, 244251 (2005).Google Scholar
19.Cai, W., Mu, R., Zha, S., Sun, G., Chen, S., Zhao, Z., Li, H., Tian, H., Tang, Y., Tao, F., Zeng, L. and Gong, J.: Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4, 19 (2018).Google Scholar
20.Wegener, E.C., Wu, Z., Tseng, H., Gallagher, J.R., Ren, Y., Diaz, R.E., Ribeiro, F.H. and Miller, J.T.: Structure and reactivity of Pt–In intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation. Catal. Today 299, 146153 (2018).Google Scholar
21.Alcalá, R., Shabaker, J. W., Huber, G. W., Sanchez-Castillo, M. A. and Dumesic, J. A.: Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. J. Phys. Chem. B. 109, 20742085 (2015).Google Scholar
22.Paz, R.R.: A DFT study of the adsorption and dehydrogenation of ethanol on a specific Pt-Sn catalyst. ECS Trans. 77, 16251641 (2017).Google Scholar
23.Bariås, O.A., Holmen, A. and Blekkan, E. A.: Propane dehydrogenation over supported Pt and Pt-Sn catyalysts: catalyst preparation, characterization, and activity measurements. J. Catal. 158, 112 (1996Google Scholar
24.Hauser, A.W., Horn, P.R., Head-gordon, M. and Bell, A.T.: A systematic study on Pt-based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction. Phys. Chem. Chem. Phys. 18, 1090610917 (2016).Google Scholar
25.Wang, C., Garbarino, G., Allard, L.F., Wilson, F., Busca, G. and Flytzani-stephanopoulos, M.: Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx. ACS Catal. 6, 210218 (2016).Google Scholar
26.Saravanan, G., Khobragade, R., Nagar, L.C. and Labhsetwar, N.: Ordered intermetallic Pt – Cu nanoparticles for the catalytic CO oxidation reaction. RSC Adv. 6, 8563485642 (2016).Google Scholar
27.Sattler, J.J.H.B., Gonzalez-Jimenez, I.D., Luo, L., Stears, B.A., Malek, A., Barton, D.G., Kilos, B.A., Kaminsky, M.P., Verhoeven, T.W.G.M., Koers, E.J., Baldus, M. and Weckhuysen, B.M.: Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew. Chem. Int. Ed. 53, 92519256 (2014).Google Scholar
28.Zhu, J., Zheng, X., Wang, J., Wu, Z., Han, L., Lin, R., Xin, H.L. and Wang, D.: Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A. 3, 2212922135 (2015).Google Scholar
29.Huang, Z., Fryer, J.R., Park, C., Stirling, D. and Webb, G.: Transmission electron microscopy, energy dispersive x-ray spectroscopy, and chemisorption studies of Pt–Ge/ γ-Al2O3 reforming catalysts. J. Catal. 175, 226235 (1998).Google Scholar
30.Stegelmann, C., Andreasen, A. and Campbell, C.T.: Degree of rate control: how much the energies of intermediate and transition states control rates. J. Am. Chem. Soc. 131, 80778082 (2009).Google Scholar
Supplementary material: PDF

Jalid et al. supplementary material

Jalid et al. supplementary material 1

Download Jalid et al. supplementary material(PDF)
PDF 4.7 MB