Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T13:11:54.853Z Has data issue: false hasContentIssue false

In situ thermomechanical testing for micro/nanomaterials

Published online by Cambridge University Press:  12 August 2011

Wonmo Kang
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, Illinois 61801
M. Taher A. Saif*
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, Illinois 61801
*
Address all correspondence to M. Taher A. Saif at [email protected]
Get access

Abstract

A novel method for the in situ thermomechanical test of micro/nanoscale samples at high temperature is presented. During the in situ test, the stage is resistively heated while the temperature is measured by a cofabricated temperature sensor. For experimental demonstration of the thermomechanical testing method, we fabricate the Micro-Electro-Mechanical Systems (MEMS) stage using silicon carbide (SiC) and carry out in situ uniaxial tests for single-crystal silicon (SCS) microsamples at temperatures from room temperature to 400 °C. We recover the known elastic modulus of SCS within 1% error in this temperature range.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nix, W.D., Greer, J.R., Feng, G., and Lilleodden, E.T.: Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 (2007).CrossRefGoogle Scholar
2.Rajagopalan, J., Han, J.H., and Saif, M.T.A.: Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315, 1831 (2007).CrossRefGoogle ScholarPubMed
3.Oh, S.H., Legros, M., Kiener, D., and Dehm, G.: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8, 95 (2009).CrossRefGoogle Scholar
4.Zhu, Y. and Espinosa, H.D.: An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. 102, 1450314508 (2005).CrossRefGoogle ScholarPubMed
5.Haque, M.A. and Saif, M.T.A.: A review of MEMS-based microscale and tensile and bending testing nanoscale. Exp. Mech. 43, 248 (2003).CrossRefGoogle Scholar
6.Uchic, M.D. and Dimiduk, D.M.: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng. A 400, 268 (2005).Google Scholar
7.Kiener, D., Grosinger, W., Dehm, G., and Pippan, R.: A further step towards an understanding of sizedependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580 (2008).CrossRefGoogle Scholar
8.Kang, W., Han, J.H., and Saif, M.T.A.: A novel method for in situ uniaxial tests at the micro/nano scale—Part II: experiment. J. Microelectromech. Syst. 19, 1322 (2010).Google Scholar
9.Kang, W. and Saif, M.T.A.: A novel method for in situ uniaxial tests at micro/nanoscale—Part I: theory. J. Microelectromech. Syst. 19, 1309 (2010).Google Scholar
10.Han, X.D., Zheng, K., Zhang, Y.F., Zhang, X.N., Zhang, Z., and Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
11.Nakao, S., Ando, T., Shikida, M., and Sato, K.: Effect of temperature on fracture toughness in a singlecrystal-silicon film and transition in its fracture mode. J. Micromech. Microeng. 18, 015026 (2008).CrossRefGoogle Scholar
12.Ostlund, F., Rzepiejewska-Malyska, K., Leifer, K., Hale, L.M., Tang, Y.Y., Ballarini, R., Gerberich, W.W., and Michler, J.: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439 (2009).CrossRefGoogle Scholar
13.Korte, S. and Clegg, W.J.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).CrossRefGoogle Scholar
14.Han, X.D., Zhang, Y.F., Zheng, K., Zhang, X.N., Zhang, Z., Hao, Y.J., Guo, X.Y., Yuan, J., and Wang, Z.L.: Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7, 452 (2007).CrossRefGoogle ScholarPubMed
15.Zhu, Y., Xu, F., Qin, Q.Q., Fung, W.Y., and Lu, W.: Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9, 3934 (2009).CrossRefGoogle ScholarPubMed
16.Mehregany, M., Zorman, C.A., Rajan, N., and Wu, C.H.: Silicon carbide MEMS for harsh environments. Proc. IEEE 86, 1594 (1998).CrossRefGoogle Scholar
17.Cimalla, V., Pezoldt, J., and Ambacher, O.: Group III nitride and sic based MEMS and NEMS: materials properties, technology and applications. J. Phys. D: Appl. Phys. 40, 6386 (2007).CrossRefGoogle Scholar
18.Li, Z. and Bradt, R.C.: The single crystal elastic constants of hexagonal SiC to 1000 °C. Int. J. High Technol. Ceram. 4, 1 (1988).CrossRefGoogle Scholar
19.Liu, C.: Foundations of MEMS (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).Google Scholar
20.Ono, N., Kitamura, K., Nakajima, K., and Shimanuki, Y.: Measurement of Young's modulus of silicon single crystal at high temperature and its dependency on boron concentration using the flexural vibration method. Jpn. J. Appl. Phys. 39, 368 (2000).CrossRefGoogle Scholar
21.Nakao, S., Ando, T., Shikida, M., and Satol, K.: Mechanical properties of a micron-sized SCS film in a high-temperature environment. J. Micromech. Microeng. 16, 715 (2006).CrossRefGoogle Scholar
22.Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A—Struct. Mater. Properties Microstruct. Process. 459, 262 (2007).Google Scholar
23.Namazu, T., Isono, Y., and Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450 (2000).CrossRefGoogle Scholar
24.Tsuchiya, T., Hirata, M., Chiba, N., Udo, R., Yoshitomi, Y., Ando, T., Sato, K., Takashima, K., Higo, Y., Saotome, Y., Ogawa, H., and Ozaki, K.: Cross comparison of thin-film tensile-testing methods examined using single-crystal silicon, polysilicon, nickel, and titanium films. J. Microelectromech. Syst. 14, 1178 (2005).CrossRefGoogle Scholar
25.Yi, T., Li, L., and Kim, C.J.: Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength. Sens. Actuators A, Phys. 83, 172 (2000).CrossRefGoogle Scholar