Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T07:48:52.689Z Has data issue: false hasContentIssue false

Improvement of the electrochemical performance of LiFePO4 cathode by Y-doping

Published online by Cambridge University Press:  17 August 2017

F. Herrera*
Affiliation:
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L.B.O'Higgins 3363, Santiago, Chile
F. Fuenzalida
Affiliation:
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L.B.O'Higgins 3363, Santiago, Chile
P. Marquez
Affiliation:
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L.B.O'Higgins 3363, Santiago, Chile
J. L. Gautier
Affiliation:
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L.B.O'Higgins 3363, Santiago, Chile
*
Address all correspondence to F. Herrera at [email protected]
Get access

Abstract

LiFe1−xYxPO4 doped (d-LFP) with amounts of yttrium (0.01% < x < 5% w/w) show a remarkable effect on the electrochemical behavior. The d-LPF samples were investigated on the Li extraction/insertion performance through charge/discharge and capacity–voltage curves. The best performance was attained with Y content of x = 1%. The materials were synthesized by a hydrothermal method and characterized by x-ray diffraction (XRD) and scanning electron microscopy–energy dispersive x-ray spectroscopy (SEM–EDX). The XRD studies showed that d-LPF had the same monoclinic structure as the undoped material. The achieved electrode performance has been attributed to the addition of Y3+ ion by stabilizing the orthorhomic structure. The electrode resistance decreases through the Y-doping.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ivanova, Sv, Zhecheva, E., Nihtianova, D., Mladenov, M.L., and Stoyanova, R.: Electrochemical intercalation of Li+ into nano domain Li4Mn5O12. J. Alloys Compd. 561, 252 (2013).Google Scholar
2.Zhang, S.S.: Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153 (2013).Google Scholar
3.Soltane, L. and Sediri, F.: Hydrothermal synthesis and characterization of mesoporous rod-like hybrid organic-inorganic nanocrystalline based vanadium oxide. Ceram. Int. 40, 1531 (2014).Google Scholar
4.Jugovic, D. and Uskokovic, D.: A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J. Power Sources 190, 538 (2009).Google Scholar
5.Brodd, R.J. and Helou, C.: Cost comparison of producing high-performance Li-ion batteries in the U.S. and in China. J. Power Sources 231, 293 (2013).Google Scholar
6.Cheng, F., Tao, Z., Liang, J., and Chen, J.: Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 20, 667 (2008).Google Scholar
7.Fu, L.J., Liu, H., Li, C., Wu, Y.P., Rahm, E., Holze, R., and Wu, H.Q.: Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog. Mater. Sci 50, 881 (2005).Google Scholar
8.Chen, J. and Whittingham, M.S.: Hydrothermal synthesis of lithium iron phosphate. Electrochem. Commun. 8, 855 (2006).Google Scholar
9.Chen, J., Vacchio, M.J., Wang, S., Chernova, N., Zavalij, P.Y., and Whittingham, M.S.: The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ion. 178, 1676 (2008).Google Scholar
10.Jin, B. and Gu, H.: Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ion. 178, 1907 (2008).Google Scholar
11.Wang, Y., Zhu, B., Wang, Y., and Wang, F.: Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries. Ceram. Int. 42, 10297 (2016).Google Scholar
12.Zhou, X., Chen, M., Bai, H., Su, C., Feng, L., and Guo, J.: Preparation and electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis. Vacuum 99, 49 (2014).Google Scholar
13.Shengkui, Z., Letong, L., Jiqiong, J., Yanwei, L., Jian, W., Jiequn, L., and Yanhong, L.: Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries. J. Rare Earths 27, 134 (2009).Google Scholar
14.Omenya, F., Chernova, N.A., Zhang, R., Fang, J., Huang, Y., Cohen, F., Dobrzynski, N., Senanayake, S., Xu, W., and Whittingham, M.S.: Why substitution enhances the reactivity of LiFePO4. Chem. Mater. 25, 85 (2005).Google Scholar
15.Hu, C.-W., Chen, T.-Y., Shih, K.-S., Wu, P.-J., Su, H.-C., Chian, C.-Y., Huang, A.-F., Hsieh, H.-W., Chang, C.-C., Shew, B.-Y., and Lee, C.-H.: Real-time investigation on the influences of vanadium additives to the structural and chemical state evolutions of LiFePO4 for enhancing the electrochemical performance of lithium-ion battery. J. Power Sources 270, 449 (2014).Google Scholar
16.Chong, J., Xun, S., Song, X., Ridgway, P., Liu, G., and Battaglia, V.S.: Towards the understanding of coatings on rate performance of LiFePO4. J. Power Sources 200, 67 (2012).Google Scholar
17.Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, H., Musser, J., and Finamore, P.: Cycle-life model for graphite-LiFePO4 cells. J. Power Sources 196, 3942 (2011).Google Scholar
18.Ji, D., Zhou, H., Tong, Y., Wang, J., Zhu, M., Chen, T., and Yuan, A.: Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 313, 1623 (2017).Google Scholar
19.Yan, L., Yu, J., and Luo, H.: Ultrafine TiO2 nanoparticles on reduced graphene oxide as anode materials for lithium ion batteries. Appl. Mat. Today 8, 31 (2017).Google Scholar
20.Song, Y., Chen, Y., Wu, J., Fu, Y., Zhou, R., Chen, S., and Wang, L.: Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries. J. Alloys Compd. 694, 1246 (2017).Google Scholar
21.Sasaki, T., Ukyo, Y., and Novák, P.: Memory effect in a lithium-ion battery. Nat. Mater. 12, 569 (2013).Google Scholar
Supplementary material: File

Herrera supplementary material

Herrera supplementary material 1

Download Herrera supplementary material(File)
File 110.1 KB