Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T10:43:57.849Z Has data issue: false hasContentIssue false

High-rate sputtering deposition of high- and low-refractive index films from conductive composites

Published online by Cambridge University Press:  21 May 2015

Li Qin Zhou
Affiliation:
Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal; Aveiro Nanotechnology Institute, University of Aveiro, 3810-193 Aveiro, Portugal
Qi Hua Fan*
Affiliation:
Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, South Dakota
Raul Simões
Affiliation:
Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal; Aveiro Nanotechnology Institute, University of Aveiro, 3810-193 Aveiro, Portugal
Victor Neto*
Affiliation:
Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal; Aveiro Nanotechnology Institute, University of Aveiro, 3810-193 Aveiro, Portugal
*
Address all correspondence to Qi Hua Fan, Victor Neto at[email protected]; [email protected]
Address all correspondence to Qi Hua Fan, Victor Neto at[email protected]; [email protected]
Get access

Abstract

Dielectric thin films of high- and low-refractive index are the essential components for optical coatings. To achieve high sputtering rates and superior film quality, the authors have developed novel conductive SiO2:Si and ZnO:Zn composites that become conductive once the doped silicon and metal Zn reach a critical ratio. The sputtering characteristics of the composite targets in direct current and radio-frequency (RF) plasma discharge are quite different from the corresponding element targets. The optical properties of the RF sputtered SiO2 and ZnO films from the composite targets is comparable with the films obtained from RF sputtering of pure oxide targets.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Macleod, H.A.: Thin-Film Optical Filters, 3rd ed.IOP Publishing: Bristol and Philadelphia (2001).Google Scholar
2.Pliskin, W.A.: Comparison of properties of dielectric films deposited by various methods. J. Vac. Sci. Technol. 14, 1064 (1977).Google Scholar
3.Hanaizumi, O., Ono, K., and Ogawa, Y.: Blue-light emission from sputtered Si:SiO2 films without annealing. Appl. Phys. Lett. 82, 538 (2003).CrossRefGoogle Scholar
4.Iwahori, K., Furuta, M., Taki, Y., Yamamura, T., and Tanaka, A.: Optical properties of fluoride thin films deposited by RF magnetron sputtering. Appl. Opt. 45, 4598 (2006).Google Scholar
5.Wang, Y.L., Ren, F., Lim, W., Norton, D.P., Pearton, S.J., Kravchenko, I.I., and Zavada, J.M.: Room temperature deposited indium zinc oxide thin film transistors. Appl. Phys. Lett. 90, 232103 (2007).CrossRefGoogle Scholar
6.Kitano, M., Funatsu, K., Matsuoka, M., Ueshima, M., and Anpo, M.: Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J. Phys. Chem. B 110, 25266 (2006).CrossRefGoogle ScholarPubMed
7.Hasana, M.M., Haseeba, A.S.M.A., Saidura, R., Masjukia, H.H., and Hamdi, M.: Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiO2 thin films. Opt. Mater. 32, 690 (2010).Google Scholar
8.Signorea, M.A., Sytchkovab, A., Dimaioa, D., Cappelloa, A., and Rizzo, A.: Deposition of silicon nitride thin films by RF magnetron sputtering: a material and growth process study. Opt. Mater. 34, 632 (2012).CrossRefGoogle Scholar
9.Kitao, A., Imakita, K., Kawamura, I., and Fujii, M.: An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations. J. Phys. D, Appl. Phys. 47, 215101 (2014).Google Scholar
10.Rademacher, D., Bräuer, G., Fritz, B., and Vergöhl, M.: Optical properties of silicon titanium oxide mixtures prepared by metallic mode reactive sputtering. Appl. Opt. 51, 8047 (2012).Google Scholar
11.Pappas, S.D., Grammatikopoulos, S., Poulopoulos, P., Kapaklis, V., Delimitis, A., Trachylis, D., and Politis, C.: A cost-effective growth of SiOx thin films by reactive sputtering: photoluminescence tuning. J. Nanosc. Nanotechnol. 11, 3684 (2011).Google Scholar
12.Pernice, W.H.P., Xiong, C., and Tang, H.X.: High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Opt. Express 20, 12261 (2012).Google Scholar
13.Kuschel, T. and von Keudell, A.: Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering. J. Appl. Phys. 107, 103302 (2010).CrossRefGoogle Scholar
14.Aiempanakit, M., Kubart, T., Larsson, P., Sarakinos, K., Jensen, J., and Helmersson, U.: Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides. Thin Solid Films 519, 7779 (2011).CrossRefGoogle Scholar
15.Särhammara, E., Strijckmansb, K., Nyberga, T., Van Steenbergeb, S., Berga, S., and Depla, D.: A study of the process pressure influence in reactive sputtering aiming at hysteresis elimination. Surface Coat. Technol. 232, 357 (2013).Google Scholar
16.Hollerweger, R., Holec, D., Paulitsch, J., Rachbauer, R., Polcik, P., and Mayrhofer, P.H.: Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5. J. Phys. D, Appl. Phys. 46, 335203 (2013).Google Scholar
17.Strnad, G., Jakab-Farkas, L., Papp, S., Fekete, A.Z., Biro, D., and Vida-Simiti, I.: Optimization of reactive sputtering technology for hard coatings deposition. Appl. Mech. Mater. 657, 246 (2014).Google Scholar
18.Zhou, L.Q., Dubey, M., Simões, R., Fan, Q.H., and Neto, V.: Conductive ZnO:Zn composites for high rate sputtering deposition of intrinsic ZnO thin films. J. Electron. Mater. 44, 682 (2015).Google Scholar
19.McLachlan, D.S., Blaszkiewicz, M., and Newnham, R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187 (1990).CrossRefGoogle Scholar
20.Bachari, E.M., Baud, G., Amor, S.B., and Jacquet, M.: Structural and optical properties of sputtered ZnO films. Thin Solid Films 348, 165 (1999).CrossRefGoogle Scholar
21.Craciun, V., Elders, J., Gardeniers, J.G.E., and Boyd, I.W.: Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl. Phys. Lett. 65, 2963 (1994).Google Scholar
22.Ellmer, K.: Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. D, Appl. Phys. 34, 3097 (2001).Google Scholar