Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T07:34:52.675Z Has data issue: false hasContentIssue false

Highly loaded MXene/carbon nanotube yarn electrodes for improved asymmetric supercapacitor performance

Published online by Cambridge University Press:  29 January 2019

Jong Woo Park
Affiliation:
Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
Dong Yeop Lee
Affiliation:
Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
Hyunsoo Kim
Affiliation:
Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
Jae Sang Hyeon
Affiliation:
Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
Monica Jung de Andrade
Affiliation:
The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA
Ray H. Baughman
Affiliation:
The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA
Seon Jeong Kim*
Affiliation:
Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
*
Address all correspondence to Seon Jeong Kim at [email protected]
Get access

Abstract

Yarn-type supercapacitors should have high energy density in small given spaces, and the one attempt among many is to comprise the electrodes asymmetrically. However, the low capacitance of conventional materials causes the widened operating voltage useless. In this study, we have utilized a novel material MXene with carbon nanotubes (CNTs) to make highly loaded MXene/CNT yarn electrodes, which exhibited a remarkable areal capacitance. With MnO2/CNT biscrolled cathode and PVA/LiCl gel electrolyte, the plied asymmetric yarn supercapacitor had energy density of 100 µWh/cm2. The yarn supercapacitor could operate under mechanical deformations without performance degradation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weng, W., Chen, P., He, S., Sun, X. and Peng, H.: Smart electronic textiles. Angew. Chem. Int. Ed. 55, 6140 (2016).Google Scholar
2.Choi, C., Kim, J.H., Sim, H.J., Di, J., Baughman, R.H. and Kim, S.J.: Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv. Energy Mater. 7, 1602021 (2017).Google Scholar
3.Choi, C., Lee, J.M., Kim, S.H. and Kim, S.J.: Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16, 7677 (2016).Google Scholar
4.Gao, L., Surjadi, J.U., Cao, K., Zhang, H., Li, P., Xu, S., Jiang, C., Song, J., Sun, D. and Lu, Y.: Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces 9, 54099 (2017).Google Scholar
5.Saravanakumar, B., Jayaseelan, S.S., Seo, M.K., Kim, H.Y. and Kim, B.S.: NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications. Nanoscale 9, 18819 (2017).Google Scholar
6.Choi, C., Park, J.W., Kim, K.J., Lee, D.W., de Andrade, M.J., Kim, S.H., Gambhir, S., Spinks, G.M., Baughman, R.H. and Kim, S.J.: Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv. 8, 13112 (2018).Google Scholar
7.Yu, J., Lu, W., Smith, J.P., Booksh, K.S., Meng, L., Huang, Y., Li, Q., Byun, J.H., Oh, Y. and Chou, T.W.: A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 7, 1600976 (2017).Google Scholar
8.Sun, J., Huang, Y., Fu, C., Huang, Y., Zhu, M., Tao, X., Zhi, C. and Hu, H.: A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics. J. Mater. Chem. A 4, 14877 (2016).Google Scholar
9.Zhang, Q., Wang, X., Pan, Z., Sun, J., Zhao, J., Zhang, J., Zhang, C., Tang, L., Luo, J., Song, B., Zhang, Z., Lu, W., Li, Q., Zhang, Y. and Yao, Y.: Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17, 2719 (2017).Google Scholar
10.Guo, J., Zhang, Q., Sun, J., Li, C., Zhao, J., Zhou, Z., He, B., Wang, X., Man, P., Li, Q., Zhang, J., Xie, L., Li, M. and Yao, Y.: Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. J. Power Source 382, 122 (2018).Google Scholar
11.Zhang, Q., Sun, J., Pan, Z., Zhang, J., Zhao, J., Wang, X., Zhang, C., Yao, Y., Lu, W., Li, Q., Zhang, Y. and Zhang, Z.: Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39, 219 (2017).Google Scholar
12.Niu, X., Zhu, G., Yin, Z., Dai, Z., Hou, X., Shao, J., Huang, W., Zhang, Y. and Dong, X.: Fiber-based all-solid-state asymmetric supercapacitors based on Co3O4@MnO2 core/shell nanowire arrays. J. Mater. Chem. A 5, 22939 (2017).Google Scholar
13.Zhao, J., Li, H., Li, C., Zhang, Q., Sun, J., Wang, X., Guo, J., Xie, L., Xie, J., He, B., Zhou, Z., Lu, C., Lu, W., Zhu, G. and Yao, Y.: MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45, 420 (2018).Google Scholar
14.Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall'Agnese, Y., Rozier, P., Taberna, P L., Naguib, M., Simon, P., Barsoum, M.W. and Gogotsi, Y.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502 (2013).Google Scholar
15.Lukatskaya, M.R., Kota, S., Lin, Z., Zhao, M.Q., Shpigel, N., Levi, M.D., Halim, J., Taberna, P.L., Barsoum, M.W., Simon, P. and Gogotsi, Y.: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).Google Scholar
16.Hu, M., Li, Z., Li, G., Hu, T., Zhang, C. and Wang, X.: All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. 2, 1700143 (2017).Google Scholar
17.Zhang, J., Seyedin, S., Gu, Z., Yang, W., Wang, X. and Razal, J.M.: MXene: a potential candidate for yarn supercapacitors. Nanoscale 9, 18604 (2017).Google Scholar
18.Yang, Q., Xu, Z., Fang, B., Huang, T., Cai, S., Chen, H., Liu, Y., Gopalsamy, K., Gao, W. and Gao, C.: MXene/Graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113 (2017).Google Scholar
19.Seyedin, S., Yanza, E.R.S. and Razal, J.M.: Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J. Mater. Chem. A 5, 24076 (2017).Google Scholar
20.Lima, M.D., Fang, S., Lepro, X., Lewis, C., Robles, R.O., Gonzalez, J.C., Martinez, E.C., Kozlov, M.E., Oh, J., Stoughton, S., Zakhidov, A.A. and Baughman, R.H.: Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013), 51 (2011).Google Scholar
21.Choi, C., Kim, K.M., Kim, K.J., Lepro, X., Spinks, G.M., Baughman, R.H. and Kim, S.J.: Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 7, 13811 (2016).Google Scholar
22.Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S. and Gogotsi, Y.: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633 (2017).Google Scholar
23.Mashtalir, O., Naguib, M., Dyatkin, B., Gogotsi, Y. and Barsoum, M.W.: Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147 (2013).Google Scholar
Supplementary material: PDF

Park et al. supplementary material

Figures S1-S13 and Tables S1-S2

Download Park et al. supplementary material(PDF)
PDF 1.7 MB