Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T17:08:02.108Z Has data issue: false hasContentIssue false

Guidelines in predicting phase formation of high-entropy alloys

Published online by Cambridge University Press:  23 April 2014

Y. Zhang*
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Z.P. Lu
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
S.G. Ma
Affiliation:
Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Z. Tang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Y.Q. Cheng
Affiliation:
Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
M.C. Gao
Affiliation:
National Energy Technology Laboratory, Albany, Oregon 97321; URS Corporation, P.O. Box 1959, Albany, Oregon 97321
*
Address all correspondence to Y. Zhang at[email protected]
Get access

Abstract

With multiple elements mixed at equal or near-equal molar ratios, the emerging, high-entropy alloys (HEAs), also named multi-principal elements alloys (MEAs), have posed tremendous challenges to materials scientists and physicists, e.g., how to predict high-entropy phase formation and design alloys. In this paper, we propose some guidelines in predicting phase formation, using thermodynamic and topological parameters of the constituent elements. This guideline together with the existing ones will pave the way toward the composition design of MEAs and HEAs, as well as property optimization based on the composition–structure–property relationship.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).Google Scholar
2.Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).Google Scholar
3.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213 (2004).Google Scholar
4.Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicoponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).Google Scholar
5.Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. J. Miner. Met. Mater. Soc. 64, 830 (2012).CrossRefGoogle Scholar
6.Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).Google Scholar
7.Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).CrossRefGoogle Scholar
8.Guo, W., Dmowski, W., Noh, J-Y., Rack, P., Liaw, P.K., and Egami, T.: Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study. Metall. Mater. Trans. A 44, 1994 (2013).Google Scholar
9.Dubois, J.M.: Complex metallic alloys: clarity through complexity. Nat. Mater. 9, 287 (2010).Google Scholar
10.Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., and Sakuma, T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464 (2003).Google Scholar
11.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).Google Scholar
12.Kuznetsov, A.V., Shaysultanov, D.G., Stepanov, N.D., Salishchev, G.A., and Senkov, O.N.: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng. A 533, 107 (2012).Google Scholar
13.Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).CrossRefGoogle Scholar
14.Zhang, Y., Zuo, T.T., Cheng, Y.Q., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).Google Scholar
15.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
16.Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).CrossRefGoogle Scholar
17.Ranganathan, S.: Alloyed pleasures: multimetallic cocktails. Curr. Sci. 85, 1404 (2003).Google Scholar
18.Greer, A.L.: Materials science-confusion by design. Nature 366, 303 (1993).Google Scholar
19.Hume-Rothery, W.: Phase Stability in Metals and Alloys (McGraw-Hill, New York, 1967).Google Scholar
20.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).Google Scholar
21.Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).Google Scholar
22.Delaire, O., Swan-Wood, T., and Fultz, B.: Negative entropy of mixing for vanadium-platinum solutions. Phys. Rev. Lett. 93, 185704 (2004).Google Scholar
23.Martyushev, L.M. and Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1 (2006).CrossRefGoogle Scholar
24.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).Google Scholar
25.Cunliffe, A., Plummer, J., Figueroa, I., and Todd, I.: Glass formation in a high entropy alloy system by design. Intermetallics 23, 204 (2012).Google Scholar
26.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
27.Wang, F.J., Zhang, Y., and Chen, G.L.: Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478, 321 (2009).Google Scholar
28.Zhang, Y., Zhou, Y.J., Hui, X.D., Wang, M.L., and Chen, G.L.: Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G – Phys. Mech. Astron. 51, 427 (2008).Google Scholar
29.Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).Google Scholar
30.Ma, S.G., Zhang, S.F., Gao, M.C., Liaw, P.K., and Zhang, Y.: A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. J. Miner. Met. Mater. Soc., 65, 1751 (2013).CrossRefGoogle Scholar
31.Tang, Z., Gao, M.C., Diao, H.Y., Yang, T.F., Liu, J.P., Zuo, T.T., Zhang, Y., Lu, Z.P., Cheng, Y.Q., Zhang, Y.W., Dahmen, K.A., Liaw, P.K., and Egami, T.: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. J. Miner. Met. Mater. Soc., 65, 1848 (2013).CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. Supplementary Material

Table S1

Download Zhang et al. Supplementary Material(File)
File 485.9 KB