Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:39:57.405Z Has data issue: false hasContentIssue false

Fabrication of optically active fiber mats via melt electrospinning

Published online by Cambridge University Press:  13 August 2018

John P. Murphy*
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Montana University System Materials Science Ph.D. Program, 1300 W. Park St., Butte, MT 59701, USA
Molly C. Brockway
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Montana University System Materials Science Ph.D. Program, 1300 W. Park St., Butte, MT 59701, USA
Jessica M. Andriolo
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Mechanical Engineering Department, Montana Tech, 1300 W. Park St., Butte, MT 59701, USA
Nathan J. Sutton
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Mechanical Engineering Department, Montana Tech, 1300 W. Park St., Butte, MT 59701, USA
Jack L. Skinner
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Montana University System Materials Science Ph.D. Program, 1300 W. Park St., Butte, MT 59701, USA Mechanical Engineering Department, Montana Tech, 1300 W. Park St., Butte, MT 59701, USA
*
Address all correspondence to John P. Murphy at [email protected]
Get access

Abstract

Melt electrospinning is a facile fabrication technique that can be utilized in the creation of microfibers without the use of solvent and with good control over feature placement. The available thermal energy of the melt electrospinning technique is often only utilized in the formation of the polymer melt but can also be used to thermodynamically drive chemical reactions. In this study, hybrid perovskite microcrystallites are synthesized in the polymer melt and electrospun to form composite microfibers. Unique hybrid perovskite microstructures were studied, elucidating mechanisms of formation at work in the polymer melt.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Larrondo, L. and St. John Manley, R.: Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci. Polym. Phys. Ed. 19, 909 (1981). doi: 10.1002/pol.1981.180190601.Google Scholar
2.Lyons, J., Li, C., and Ko, F.: Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45, 7597 (2004). doi: 10.1016/j.polymer.2004.08.071Google Scholar
3.Brown, T.D., Dalton, P.D., and Hutmacher, D.W.: Direct writing by way of melt electrospinning. Adv. Mater. 23, 5651 (2011). doi: 10.1002/adma.201103482Google Scholar
4.Wunner, F.M., Willie, M.L., Noonan, T.G., Bas, O., Dalton, P.D., De-Juan-Pardo, E.M., and Hutmacher, D.W.: Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mater. 30, 1706570 (2018). doi: 10.1002/adma.201706570.Google Scholar
5.Zhang, S., Lanty, G., Lauret, J.S., Deleporte, E., Audebert, P., and Galmiche, L.: Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors. Acta Mater. 57, 3301 (2009). doi: 10.1016/j.actamat.2009.03.037.Google Scholar
6.Quarti, C., Mosconi, E., Ball, J.M., D'Innocenzo, V., Tao, C., Pathak, S., Snaith, H.J., Petrozza, A., and De Angelis, F.: Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155 (2016). doi: 10.1039/C5EE02925BGoogle Scholar
7.Ziang, X., Shifeng, L., Laixiang, Q., Shuping, P., Wei, W., Yu, Y., Li, Y., Zhijian, C., Shufeng, W., Honglin, D., Minghui, Y., and Qin, G.G.: Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mater. Express 5, 29 (2015). doi: 10.1364/OME.5.000029Google Scholar
8.Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Prince, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bien, T., Snaith, H.J., and Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014). doi: 10.1038/nnano.2014.149.Google Scholar
9.Bai, S., Yuan, Z., and Gao, F.: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J. Mater. Chem. C 4, 3898 (2016). doi: 10.1039/C5TC04116C.Google Scholar
10.Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Il Seok, S.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013). doi: 10.1021/nl400349b.Google Scholar
11.Niu, G., Guo, X., and Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970 (2015). doi: 10.1039/C4TA04994B.Google Scholar
12.Manser, J.S., Saidaminov, M.I., Christians, J.A., Bakr, O.M., and Kamat, P.V.: Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330 (2016). doi: 10.1021/acs.accounts.5b00455.Google Scholar
13.Yang, J., Siempelkamp, B.D., Liu, D., and Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015). doi: 10.1021/nn506864k.Google Scholar
14.Murphy, J.P., Andriolo, J.M., Ross, B.M., Wyss, G.F., Zander, N.E., and Skinner, J.L.: Organometallic Halide perovskite synthesis in polymer melt for improved stability in high humidity. MRS Adv. 1, 3207 (2016). doi: 10.1557/adv.2016.379.Google Scholar
15.Murphy, J.P., Ross, B.M., Andriolo, J.M., and Skinner, J.L.: Hybrid organic–inorganic perovskite composite fibers produced via melt electrospinning. J. Vac. Sci. Technol. B 34, 06KM01 (2016). doi: 10.1116/1.4966604.Google Scholar
16.Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., and Yang, S.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245 (2013). doi: 10.1039/c3nr00218g.Google Scholar
17.Dualeh, A., Gao, P., Il Seok, S., Nazeeruddin, M.K., and Grätzel, M.: Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160 (2014). doi: 10.1021/cm502468k.Google Scholar
18.Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N.P., and Cui, G.: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chemie Int. Ed 54, 9705 (2015). doi: 10.1002/anie.201504379.Google Scholar
19.Murphy, J.P., Andriolo, J.M., Sutton, N.J., Brockway, M.C., and Skinner, J.L.: Coaxial hybrid perovskite fibers: synthesis and encapsulation in situ via electrospinning. J. Vac. Sci. Technol. B 35, 06G402 (2017). doi: 10.1116/1.4991724.Google Scholar