Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T10:39:30.807Z Has data issue: false hasContentIssue false

Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure

Published online by Cambridge University Press:  24 April 2019

N. Aghoutane
Affiliation:
Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
M. El-Yadri
Affiliation:
Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
A. El Aouami
Affiliation:
Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
E. Feddi*
Affiliation:
Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat 10100, Morocco
G. Long*
Affiliation:
Department of Physics, Saint John's University, Jamaica, NY, 11439, USA
M. Sadoqi
Affiliation:
Department of Physics, Saint John's University, Jamaica, NY, 11439, USA
F. Dujardin
Affiliation:
LCP-A2MC, Université de Lorraine, 57000 Metz, France
Chuong V. Nguyen
Affiliation:
Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi, 100000, Vietnam
Nguyen N. Hieu
Affiliation:
Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
Huynh V. Phuc
Affiliation:
Division of Theoretical Physics, Dong Thap University, Cao Lanh, 870000, Vietnam
*
Address all correspondence to E. Feddi at [email protected]; G. Long at [email protected]
Address all correspondence to E. Feddi at [email protected]; G. Long at [email protected]
Get access

Abstract

This work is based on a recent theoretical study of how the hydrostatic pressure and core/shell sizes affect the optical properties associated with the transition from the ground state to first excited state (1s–1p), of an exciton confined in spherical core/shell quantum dots (SCSQDs). We have computed under an effective mass framework, linear, third-order nonlinear, and total absorption coefficients (AC) and refractive index (RI) as functions of photon energy for different sizes of SCSQDs with varying hydrostatic pressure. Our results show that the optical absorption is deeply dependent on the incident light intensity. Both AC and RI significantly influenced by the confinement and pressure effects.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, F.Q., and Gerion, D.: Fluorescent CdSe/ZnS Nanocrystal−Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells. Nano Lett. 4, 1827 (2004).10.1021/nl049170qGoogle Scholar
2.Peng, X., and Battaglia, D.: Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent. Nano Lett. 2, 1027 (2002).Google Scholar
3.Xu, S., Kumar, S., and Nann, T.: Rapid Synthesis of High-Quality InP Nanocrystals. J. Am. Chem. Soc. 128, 1054 (2006).10.1021/ja057676kGoogle Scholar
4.Braus, M., Burda, C., and El-Sayed, M.A.: Variation of the Thickness and Number of Wells in the CdS/HgS/CdS Quantum Dot Quantum Well System. J. Phys. Chem. A 105, 5548 (2001).Google Scholar
5.Zhong, X., Xie, R., Basche, Y., Zhang, T., and Knoll, W.: High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chem. Mater. 17, 4038 (2005).10.1021/cm050948yGoogle Scholar
6.Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).10.1126/science.1069156Google Scholar
7.Schaller, R.D., and Klimov, V.I.: High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 186601 (2004).10.1103/PhysRevLett.92.186601Google Scholar
8.Coe, W.S., Woo, W.K., Bawendi, M.G., and Bulovic, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature (London) 420, 800 (2002).10.1038/nature01217Google Scholar
9.Colvin, V.L., Schlamp, M.C., and Alivisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature (London) 370, 354 (1994).10.1038/370354a0Google Scholar
10.Tessler, N., Medvedev, V., Kazes, M., Kan, S., and Banin, U.: Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506 (2002).10.1126/science.1068153Google Scholar
11.Kraabel, B., Malko, A., Hollingsworth, J., and Klimov, V.I.: Ultrafast dynamic holography in nanocrystal solids. Appl. Phys. Lett. 78, 1814 (2001).10.1063/1.1358365Google Scholar
12.Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.: Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc. 112, 1327 (1990).10.1021/ja00160a005Google Scholar
13.Zhou, H.S., Honma, I., and Komiyama, H.: Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties. J. Phys. Chem. 97, 895 (1993).10.1021/j100106a015Google Scholar
14.Spanhel, L., Weller, H., and Henglein, A.: Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632 (1987).10.1021/ja00256a012Google Scholar
15.Hoener, C.F., Allan, K.A., Brad, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E., and White, J.M.: Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812 (1992).10.1021/j100188a045Google Scholar
16.El Khamkhami, J., Feddi, E., Assaidc, E., Dujardind, F., Stébé, B., and Diouri, J.: Binding energy of excitons in inhomogeneous quantum dots under uniform electric field. Physica E 15, 99106 (2002).10.1016/S1386-9477(02)00448-4Google Scholar
17.Ferreyra, J.M., and Proetto, C.R.: Excitons in inhomogeneous quantum dots. Phys. Rev. B 57, 9061 (1998).Google Scholar
18.Bryant, G.B.: Transport through dirty Luttinger liquids connected to reservoirs. Phys. Rev. B 52, 16997 (1995).10.1103/PhysRevB.52.R16997Google Scholar
19.Karabulut, I., and Baskoutas, S.: Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 (2008).10.1063/1.2904860Google Scholar
20.Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., and Duque, C.A.: Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration. J. Lumin. 134, 594599 (2013).10.1016/j.jlumin.2012.07.024Google Scholar
21.Martinez-Orozco, J.C., Rodriguez-Magdaleno, K.A., Suarez-Lopez, J.R., Duque, C.A., and Restrepo, R.L.: Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects. Superlattices Microstruct. 92, 166173 (2016).10.1016/j.spmi.2016.02.034Google Scholar
22.Karabulut, I., Mora-Ramos, M.E., and Duque, C.A.: Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure. J. Lumin. 131, 15021509 (2011).Google Scholar
23.Aghoutane, N., El-Yadri, M., El Aouami, A., Feddi, E., Dujardin, F., El Haouari, M., Duque, C.A., Nguyen, C.V., and Phuc, H.V.: Refractive index changes and optical absorption involving 1s-1p excitonic transitions in quantum dot under pressure and temperature effects. Appl. Phys. A 125, 17 (2019).10.1007/s00339-018-2306-xGoogle Scholar
24.Yildirim, H., and Tomak, M.: Optical absorption of a quantum well with an adjustable asymmetry. Eur. Phys. J. B 50, 559564 (2006).Google Scholar
25.Rezaei, G., Vahdani, M.R.K., and Vaseghi, B.: Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot. Curr. Appl. Phys. 11, 176181 (2011).10.1016/j.cap.2010.07.002Google Scholar
26.Yesilgul, U., Ungan, F., Al, E.B., Kasapoglu, E., Sari, H., and Sökmen, I.: Effects of magnetic field, hydrostatic pressure and temperature on the nonlinear optical properties in symmetric double semi-V-shaped quantum well. Opt. Quantum Electron. 48, 560 (2016).10.1007/s11082-016-0838-xGoogle Scholar
27.Kasapoglu, E., Ungan, F., Sari, H., Sökmen, I., Mora-Ramos, M.E., and Duque, C.A.: Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattices Microstruct. 73, 171184 (2014).10.1016/j.spmi.2014.05.023Google Scholar
28.Hanamura, E.: Very large optical nonlinearity of semiconductor microcrystallites. Phys. Rev. B 37, 12731279 (1988).10.1103/PhysRevB.37.1273Google Scholar
29.Lu, L., Xie, W., and Shu, Z.: Combined effects of hydrostatic pressure and temperature on nonlinear properties of an exciton in a spherical quantum dot under the applied electric field. Phys. B 406, 37353740 (2011).10.1016/j.physb.2011.06.081Google Scholar
30.El Haouari, M., Talbi, A., Feddi, E., El Ghazi, H., Oukerroume, A., and Dujardin, F.: Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231237 (2017).10.1016/j.optcom.2016.09.019Google Scholar
31.Zeng, Z., Garoufalis, C.S., Terzis, A.F., and Baskoutas, S.: Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. J. Appl. Phys. 114, 023510 (2013).10.1063/1.4813094Google Scholar
32.Haa, S.H., Liua, H.Q., and Zhu, J.: Temperature and pressure modulation on intersubband optical absorption in an AlxGa1-xN/AlN core-shell nanowire. Superlattices Microstruct. 123, 183188 (2018).10.1016/j.spmi.2018.07.012Google Scholar
33.Aghoutane, N., El-Yadri, M., Feddi, E., Dujardin, F., Sadoqi, M., and Long, G.: Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot. MRS Commun. 8, 527532 (2018).10.1557/mrc.2018.74Google Scholar
34.Ha, S.H., and Ban, S.L.: Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys.: Condens. Matter 20, 085218 (2008).Google Scholar
35.Wagner, J.-M., and Bechstedt, F.: Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66, 115202 (2002).10.1103/PhysRevB.66.115202Google Scholar
36.Duque, C.M., Morales, A.L., Mora-Ramos, M.E., and Duque, C.A.: Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure. Phys. Status Solidi B 252, 670677 (2015).Google Scholar
37.Eshghi, H.: The effect of hydrostatic pressure on material parameters and electrical transport properties in bulk GaN. Phys. Lett. A 373, 17731776 (2009).10.1016/j.physleta.2009.03.013Google Scholar
38.Zhang, M., and Shi, J.J.: Influence of pressure on exciton states and interband optical transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization and dielectric mismatch. J. Appl. Phys. 111, 113516 (2012).10.1063/1.4725474Google Scholar
39.Yu, P.Y., and Cordona, M.: Fundamentals of Semiconductors (Springer, Berlin, 1998).Google Scholar
40.Culchac, F.J., Porras-Montenegro, N., and Latge, A.: Hydrostatic pressure effects on electron states in GaAs-(Ga, Al) As double quantum rings. J. Appl. Phys. 105, 094324 (2009).Google Scholar
41.Barseghyan, M.G., Mora-Ramos, M.E., and Duque, C.A.: Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl-Teller quantum ring. Eur. Phys. J. B 84, 265 (2011).10.1140/epjb/e2011-20650-7Google Scholar
42.Dujardin, F., Feddi, E., Assaid, E., and Oukerroum, A.: Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots. Eur. Phys. J. B 74, 507 (2010).Google Scholar
43.Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., and Zazoui, M.: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015).10.1063/1.4907760Google Scholar
44.El Khamkhami, J., Feddi, E., Assaid, E., Dujardin, F., Stébé, B., and Diouri, J.: Low magnetic field effect on the polarisability of excitons in spherical quantum dots. Phys. Scr. 64, 504 (2001).10.1238/Physica.Regular.064a00504Google Scholar
45.Vahdani, M.R.K., and Rezaei, G.: Influence of position-dependent effective mass on third-order nonlinear optical susceptibility of impurity doped quantum dots in the presence of Gaussian white noise. Phys. Lett. A 373, 30793084 (2009).Google Scholar
46.Jafari, A.R.: Optical properties of hydrogenic impurity in an inhomogeneous infinite spherical quantum dot. Physica B 456, 7277 (2015).10.1016/j.physb.2014.08.010Google Scholar
47.Abraham, J., Mark, H., and John Peter, A.: Dielectric confinement on exciton binding energy and nonlinear optical properties in a strained Zn1–x inMgx inSe/Zn1–x outMgx outSe quantum well. J. Semicond. 33, 092001 (2012).Google Scholar