Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T07:38:21.006Z Has data issue: false hasContentIssue false

Evaluation of novel carrier substrates for high reliability and integrated GaN devices in a 200 mm complementary metal–oxide semiconductor compatible process

Published online by Cambridge University Press:  17 September 2018

S. Stoffels*
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
K. Geens
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
X. Li
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
D. Wellekens
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
S. You
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
M. Zhao
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
M. Borga
Affiliation:
Dipartimento di Ingegneria dell'Informazione, University degli studi di Padova, Padova, Italy
E. Zanoni
Affiliation:
Dipartimento di Ingegneria dell'Informazione, University degli studi di Padova, Padova, Italy
G. Meneghesso
Affiliation:
Dipartimento di Ingegneria dell'Informazione, University degli studi di Padova, Padova, Italy
M. Meneghini
Affiliation:
Dipartimento di Ingegneria dell'Informazione, University degli studi di Padova, Padova, Italy
N.E. Posthuma
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
M. Van Hove
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
S. Decoutere
Affiliation:
PMST, IMEC, Kapeldreef 75, Heverlee, Vlaams-Brabant, Belgium
*
Address all correspondence to S. Stoffels at [email protected]
Get access

Abstract

In this paper new materials and substrate approaches are discussed which have potential to provide (Al)GaN buffers with a better crystal quality, higher critical electrical field, or thickness and have the potential to offer co-integration of GaN switches at different reference potentials, while maintaining lower wafer bow and maintaining complementary metal–oxide semiconductor (CMOS) compatibility. Engineered silicon substrates, silicon on insulator (SOI) and coefficient of thermal expansion (CTE)-matched substrates have been investigated and benchmarked with respect to each other. SOI and CTE-matched offer benefits for scaling to higher voltage, while a trench isolation process combined with an oxide interlayer substrate allows co-integration of GaN components in a GaN-integrated circuit (IC).

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Posthuma, N.E., You, S., Stoffels, S., Wellekens, D., Liang, H., Zhao, M., and Decoutere, S.: Gate architecture design for enhancement mode p-GaN gate HEMTs for 200 and 650 V applications. The 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago (USA), pp. 188191 (2018).Google Scholar
2.Posthuma, N.E., You, S., Stoffels, S., Wellekens, D., Liang, H., Zhao, M., De Jaeger, B., Geens, K., Ronchi, N., Decoutere, S., Moens, P., Banerjee, A., Ziad, H., and Tack, M.: An Industry-Ready 200 mm p-GaN E-mode GaN-on-Si power Technology. The 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago (USA), pp. 284287 (2018).Google Scholar
3.Stoffels, S., Bakeroot, B., Wu, T.L, Marcon, D., Posthuma, N.E., Decoutere, S., Tallarico, A.N., and Fiegna, C.: Failure mode for p-GaN gates under forward gate stress with varying Mg concentration. 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, pp. 4B-4.14B-4.9 (2017).Google Scholar
4.Rossetto, I., Meneghini, M., Canato, E., Barbato, M., Stoffels, S., Posthuma, N.E., Decoutere, S., Tallarico, A.N., Meneghesso, G., and Zanoni, E.: Field- and current-driven degradation of GaN-based power HEMTs with p-GaN gate: dependence on Mg-doping level. Microelectron. Reliabil. 76–77, 298303 (2017).10.1016/j.microrel.2017.06.061Google Scholar
5.Kachi, T.: Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014).10.7567/JJAP.53.100210Google Scholar
6.Steve, O: Engineered substrates to enable high-volume manufacturing for GaN devices, Power Electronics News (2018), available at https://www.powerelectronicsnews.com/technology/engineered-substrates-to-enable-high-volume-manufacturing-for-gan-devices (accessed July 26, 2018).Google Scholar
7.Stoffels, S., Geens, K., Zhao, M., Liang, H., Li, X., Van Hove, M., and Decoutere, S.: Next generation 200 mm substrates for GaN power devices. WOCSDICE, Las Palmas (Spain), pp. 9596 (2017).Google Scholar
8.Geens, K., Van Hove, M., Li, X., Zhao, M., Šatka, A., Vincze, A., and Decoutere, S.: CMOS Process-Compatible 200 mm polycrystalline AlN Substrates for GaN Power Transistors. WOCSDICE, Las Palmas (Spain), pp. 9798 (2017).Google Scholar
9.Posthuma, N.E., You, S., Liang, H., Ronchi, N., Kang, X., Wellekens, D., Sarapalli, Y.N., and Decoutere, S.: Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance, Proceedings ISPSD, Prague (Czech Republic), pp. 9598 (2016).Google Scholar
10.Stoffels, S., Zhao, M., Venegas, R., Kandaswamy, P., You, S., Novak, T., Saripalli, Y., Van Hove, M., and Decoutere, S.: The physical mechanism of dispersion caused by AlGaN/GaN buffers on Si and optimization for low dispersion, IEEE International Electron Devices Meeting (IEDM), Washington DC (USA), pp. 35.4.135.4.4. (2015).Google Scholar
11.Kamata, H., Ishii, Y., Mabuchi, T., Naoe, K., Ajimura, S., and Sanada, K.: Single crystal growth of aluminum nitride. Fujikura Tech. Rev. 38, 41 (2009).Google Scholar
12.Borga, M., Meneghini, M., Rossetto, I., Stoffels, S., Posthuma, N., Van Hove, M., Marcon, D., Decoutere, S., Meneghesso, G., and Zanoni, E.: Evidence of time-dependent vertical breakdown in GaN-on-Si HEMTs. IEEE Trans. Electron Devices 64, 36163621 (2017).10.1109/TED.2017.2726440Google Scholar
13.Marcon, D., Viaene, J., Favia, P., Bender, H., Kang, X., Lenci, S., Stoffels, S., and Decoutere, S.: Reliability of AlGaN/GaN HEMTs: Permanent leakage current increase and output current drop. In Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Suzhou (China), pp. 249254 (2013).Google Scholar
14.Christy, D., Egawa, T., Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T., and Matsumoto, K.: Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate. Appl. Phys. Express 6, 026501–1/4 (2013).10.7567/APEX.6.026501Google Scholar
15.Freedsman, J., Egawa, T., Yamaoka, Y., Yano, Y., Ubukata, A., Tabuchi, T., and Matsumoto, K.: Normally off Al2O3/AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistor on 8 in. Si with low leakage current and high breakdown voltage (825 V). Appl. Phys. Express 7, 041003–1/3 (2014).10.7567/APEX.7.041003Google Scholar
16.Chu, R., Corrion, A., Chen, M., Li, R., Wong, D., Zhender, D., Hughes, B., and Boutros, K.: 1200-V normally off GaN-on-Si field-effect transistors with low dynamic ON-resistance. IEEE Electron Device Lett. 32, 632634 (2011).Google Scholar
17.Boutros, K.S., Burnham, S., Shinohara, K., Hughes, B., Zehnder, D., and McGuire, C.: Normally-off 5A/1100 V GaN-on-silicon device for high voltage applications. IEEE International Electron Devices Meeting (IEDM), Baltimore, MD (USA), pp. 7.5.1–7.5.3 (2009).Google Scholar
18.Li, X., Van Hove, M., Zhao, M., Bakeroot, B., You, S., Groeseneken, G., and Decoutere, S.: Investigation on carrier transport through AlN nucleation layer from differently doped Si(111) substrates. IEEE Trans. Electron Devices 65, 17211727 (2018).10.1109/TED.2018.2810886Google Scholar
19.Borga, M., Meneghini, M., Stoffels, S., Li, X., Posthuma, N., Van Hove, M., Decoutere, S., Meneghesso, G., and Zanoni, E.: Impact of substrate resistivity on the vertical leakage, breakdown and trapping in GaN-on-Si E-mode HEMTs. IEEE Trans. Electron Devices 65, 27652770 (2018).10.1109/TED.2018.2830107Google Scholar
20.Marcon, D., Saripalli, Y.N., and Decoutere, S.: 200 mm GaN-on-Si epitaxy and e-mode device technology. IEEE International Electron Devices Meeting (IEDM), Washington, DC (USA), pp. 16.2.1–16.2.4 (2015).Google Scholar
21.Leach, J.H., Udwary, K., Quayle, P., Odnoblyudov, V., Basceri, C., Aktas, O., Splawn, H., and Evans, K.R.: Towards manufacturing large area GaN substrates from QST® seeds, CS MANTECH, Austin, TX (USA), 14.17 (2018).Google Scholar
22.Stoffels, S., Geens, K., Poshtuma, N.E., Zhao, M., Liang, H., Li, X., Wellekens, D., You, S., Bakeroot, B., Van Hove, M., and Decoutere, S.: GaN device architectures enabled by next generation substrates, GaN Marathon 2.0, Padova (Italy), pp. 2728 (2018).Google Scholar
23.Khadar, R.A., Liu, C., Zhang, L., Xiang, P., Cheng, K., and Matioli, E.: 820-V GaN-on-Si quasi-vertical p-i-n diodes with BFOM of 2.0 GW/cm2. IEEE Electron Device Lett. 39, 401404 (2018).10.1109/LED.2018.2793669Google Scholar
24.Zhang, Y., Piedra, D., Sun, M., Hennig, J., Dadgar, A., Yu, L., and Palacios, T.: High-performance 500 V quasi- and fully-vertical GaN-on-Si pn diodes. IEEE Electron Device Lett. 38, 248251 (2017).10.1109/LED.2016.2646669Google Scholar
25.Zhu, M., Song, B., Qi, M., Hu, Z., Nomoto, K., Yan, X., Cao, Y., Johnson, W., Kohn, E., Jena, D., and Xing, H.G.: 1.9-kV AlGaN/GaN lateral Schottky barrier diodes on silicon. IEEE Electron Device Lett. 36, 375377 (2015).10.1109/LED.2015.2404309Google Scholar
26.Li, X., Van Hove, M., Zhao, M., Geens, K., Lempinen, V.-P., Sormunen, J., Groeseneken, G., and Decoutere, S.: 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration, IEEE Electron Device Lett. 38, 918 (2017).10.1109/LED.2017.2703304Google Scholar