Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:52:39.906Z Has data issue: false hasContentIssue false

Enhanced tunneling electroresistance effect in composite ferroelectric tunnel junctions with asymmetric electrodes

Published online by Cambridge University Press:  08 November 2018

Z.J. Ma
Affiliation:
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
L.Q. Li
Affiliation:
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
K. Liang
Affiliation:
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
T.J. Zhang*
Affiliation:
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
N. Valanoor*
Affiliation:
School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
H.P. Wu
Affiliation:
Zhejiang University of Technology, Ministry of Education and Zhejiang Province, Key Laboratory of E&M, Hangzhou 310014, People's Republic of China
Y.Y. Wang
Affiliation:
Zhejiang University of Technology, Ministry of Education and Zhejiang Province, Key Laboratory of E&M, Hangzhou 310014, People's Republic of China
X.Y. Liu
Affiliation:
College of Metallurgy and Materials Engineering, Chongqing Key Laboratory of Nano/Micro Composites and Devices, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
*
Address all correspondence to T.J. Zhang at [email protected]; N. Valanoor at [email protected]
Address all correspondence to T.J. Zhang at [email protected]; N. Valanoor at [email protected]
Get access

Abstract

Theoretical investigations on ferroelectric tunnel junctions (FTJs) with asymmetric electrodes and a composite barrier are presented. A large tunneling electroresistance effect exists for the Pt/SrTiO3/BaTiO3/SrRuO3 junction; on the other hand, exchange of the dielectric and ferroelectric layer stacking sequence can seriously degrade the performance. These correlations are rationalized by the proposed concept of an asymmetry factor, defined as the ratio between the average barrier heights of FTJs for two opposite polarization orientations. We show that a large asymmetry factor is beneficial to FTJs. This work may provide a way to enhance the performance of FTJs by structure engineering.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This author was an editor of this journal during the review and decision stage. For the MRS policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts.

References

1.Tybell, T., Ahn, C., and Triscone, J-M.: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999).Google Scholar
2.Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., and Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).Google Scholar
3.Junquera, J. and Ghosez, Ph: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).Google Scholar
4.Zhuravlev, M.Y., Sabirianov, R.F., Jaswal, S.S., and Tsymbal, E.Y.: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).Google Scholar
5.Contreras, J.R., Kohlstedt, H., Poppe, U., Waser, R., Buchal, C., and Pertsev, N.A.: Resistive switching in metal-ferroelectric-metal junctions. Appl. Phys. Lett. 83, 4595 (2003).Google Scholar
6.Zhuravlev, M.Ye, Wang, Y., Maekawa, S., and Tsymbal, E.Y.: Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier. Appl. Phys. Lett. 95, 052902 (2009).Google Scholar
7.Sun, P., Wu, Y.Z., Cai, T.Yi, and Ju, S.: Effects of ferroelectric dead layer on the electron transport in ferroelectric tunneling junctions. Appl. Phys. Lett. 99, 052901 (2011).Google Scholar
8.Wen, Z., Li, C., Wu, D., Li, A.D., and Ming, N.B.: Ferroelectric field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617 (2013).Google Scholar
9.Liu, X., Burton, J.D., and Tsymbal, E.Y.: Enhanced tunneling electroresistance in ferroelectric tunnel junctions due to the reversible metallization of the barrier. Phys. Rev. Lett. 116, 197602 (2016).Google Scholar
10.Hu, W.J., Wang, Z.H., Yu, W.L., and Wu, T.: Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 7, 10808 (2016).Google Scholar
11.Li, T., Sharma, P., Lipatov, A., Lee, H., Lee, J.W., Zhuravlev, M.Y., Paudel, T.R., Genenko, Y.A., Eom, C.B., Tsymbal, E.Y., Sinitskii, A., and Gruverman, A.: Polarization-mediated modulation of electronic and transport properties of hybrid moS2-BaTiO3-SrRuO3 tunnel junctions. Nano Lett. 17, 922 (2017).Google Scholar
12.Yamada, H., Garcia, V., Fusil, S., Boyn, S., Marinova, M., Gloter, A., Xavier, S., Grollier, J., Jacquet, E., Carrétéro, C., Deranlot, C., Bibes, M., and Barthélémy, A.: Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7, 5385 (2013).Google Scholar
13.Qin, Q.H., Äkäslompolo, L., Tuomisto, N., Yao, L., Majumdar, S., Vijayakumar, J., Casiraghi, A., Inkinen, S., Chen, B., Zugarramurdi, A., Puska, M., and van Dijken, S.: Resistive switching in all-oxide ferroelectric tunnel junctions with ionic interfaces. Adv. Mater. 28, 6852 (2016).Google Scholar
14.Ma, Z.J., Zhang, T.J., Pan, R.K., Duan, M.G., and He, M.: Optimal dielectric thickness for ferroelectric tunnel junctions with a composite barrier. J. Appl. Phys. 111, 074311 (2012).Google Scholar
15.Wu, Y.Z., Ju, S., and Li, Z.Y.: Effects of electrodes and space charges on the tunneling electroresistance in the ferroelectric tunnel junction with a SrTiO3/BaTiO3 composite barrier. Appl. Phys. Lett. 96, 252905 (2010).Google Scholar
16.Caffrey, N.M., Archer, T., Rungger, I., and Sanvito, S.: Coexistance of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction. Phys. Rev. Lett. 109, 226803 (2012).Google Scholar
17.Ruan, J.J., Qiu, X.B., Yuan, Z.S., Ji, D.X., Wang, P., Li, A.D., and Wu, D.: Improved memory functions in multiferroic tunnel junctions with a dielectric/ferroelectric composite barrier. Appl. Phys. Lett. 107, 232902 (2015).Google Scholar
18.Wang, L., Cho, M.R., Shin, Y.J., Kim, J.R., Das, S., Yoon, J.-G., Chung, J-S., and Noh, T.W.: Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett. 16, 3911 (2016).Google Scholar
19.Sokolov, A., Bak, O., Lu, H., Li, S., Tsymbal, E.Y., and Gruverman, A: Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions. Nanotechnology 26, 305202 (2015).Google Scholar
20.Radaelli, G., Gutiérrez, D., Qian, M.D., Fina, I., Sánchez, F., Baldrati, L., Heidler, J., Piamonteze, C., Bertacco, R., and Fontcuberta, J.: Strain-controlled responsiveness of slave half-doped manganite La0.5Sr0.5MnO3 Layers Inserted in BaTiO3 Ferroelectric Tunnel Junctions. Adv. Electron. Mater. 2, 1600368 (2016).Google Scholar
21.Luo, X., Wang, B., and Zheng, Y.: Tunable tunneling electroresistance in ferroelectric tunnel junctions by mechanical loads. ACS Nano 5, 1649 (2011).Google Scholar
22.Chen, W.J., Zheng, Y., Luo, X., Wang, B., and Woo, C.H.: Ab initio study on the size effect of symmetric and asymmetric ferroelectric tunnel junctions: A comprehensive picture with regard to the details of electrode/ferroelectric interfaces. J. Appl. Phys. 114, 064105 (2013).Google Scholar
23.Jiang, G.L., Chen, W.J., Wang, B., Shao, J., and Zheng, Y.: Diverse polarization bi-stability in ferroelectric tunnel junctions due to the effects of the electrode and strain: an ab initio study. Phys. Chem. Chem. Phys. 19, 20147 (2017).Google Scholar
24.Zheng, Y. and Woo, C.H.: Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009).Google Scholar
25.Li, H.F., Zheng, Y., Chen, W.J., Wang, B., and Zhang, G.H.: Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions. AIP. Adv. 4, 127148 (2014).Google Scholar
26.Boyn, S., Grollier, J., Lecerf, G., Xu, B., Locatelli, N., Fusil, S., Girod, S., Carrétéro, C., Garcia, K., Xavier, S., Tomas, J., Bellaiche, L., Bibes, M., Barthélémy, A., Saïghi, S., and Garcia, V.: Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).Google Scholar
27.Guo, R., Zhou, Y.X., Wu, L.J., Wang, Z.R., Lim, Z., Yan, X.B., Lin, W.N., Wang, H., Yoong, H.Y., Chen, S.H., Ariando, , Venkatesan, T., Wang, J., Chow, G.M., Gruverman, A., Miao, X.S., Zhu, Y.M., and Chen, J.S.: Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl. Mat. Interfaces 10, 12862 (2018).Google Scholar
28.Chang, S-C., Naeemi, A., Nikonov, D.E., and Gruverman, A.: Theoretical approach to electroresistance in ferroelectric tunnel junctions. Phys. Rev. Appl. 7, 024005 (2017).Google Scholar
29.Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Saunders College Publishing, New York, USA, 1976), p. 342.Google Scholar
30.Duke, C.B.: Tunneling in Solids (Academic, New York, USA, 1999).Google Scholar
31.Cai, M.Q., Zheng, Y., Ma, P.W., and Woo, C.H.: Vanishing critical thickness in asymmetric ferroelectric tunnel junctions: First principle simulations. J. Appl. Phys. 109, 024103 (2011).Google Scholar
32.Kim, D.J., Jo, J.Y., Kim, Y.S., Chang, Y.J., Lee, J.S., Jong-Gul Yoon, , Song, T.K., and Noh, T.W.: Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitor. Phys. Rev. Lett. 95, 237602 (2005).Google Scholar
33.Kittel, C.: Introduction to Solid State Physics, 8th ed. (Wiley, New York, USA, 2005), p. 140.Google Scholar
Supplementary material: File

Ma et al. supplementary material

Ma et al. supplementary material 1

Download Ma et al. supplementary material(File)
File 1.5 MB